fractional quantum
Recently Published Documents


TOTAL DOCUMENTS

1956
(FIVE YEARS 145)

H-INDEX

115
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ravi Kumar ◽  
Saurabh Kumar Srivastav ◽  
Christian Spånslätt ◽  
K. Watanabe ◽  
T. Taniguchi ◽  
...  

AbstractThe presence of “upstream” modes, moving against the direction of charge current flow in the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here, we report noise measurements at the edges of FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at length, L = 4 μm and 10 μm away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for “hole-conjugate” FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remains independent of length, which matches our theoretical analysis demonstrating the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems.



2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Ziyu Liu ◽  
Ursula Wurstbauer ◽  
Lingjie Du ◽  
Ken W. West ◽  
Loren N. Pfeiffer ◽  
...  




Author(s):  
S. Boukaddid ◽  
R. Ahl Laamara ◽  
L. B. Drissi ◽  
E. H. Saidi ◽  
J. Zerouaoui

In this paper, we study the M-string realization of chiral [Formula: see text]-super-conformal field theory in 6 dimensions and its orbifold compactification down to three-dimensional (3D). We analyze its fractionally charged BPS particle spectrum in connection with effective 3D Chern–Simons gauge theory and the supersymmetric fractional quantum Hall effect in [Formula: see text] dimensions. We construct the set of underlying fractionally charged BPS particles in the ground state of the compactified M string and find that it contains 144 BPS states that are generated by four basic quasi-particles (two bosonic-like and two fermionic like) and their CPT conjugate. Two representations of the gauge bosons and the gauginos as condensates of the basic quasiparticles are found and explicit realizations are also given. Other features concerning generalizations are also discussed.



Author(s):  
Shinichi Ishiguri

In this paper, using the two integers that describe the stationary 2-dimensional wave and the charge quantization along with the balance between the Lorentz force and electrical force, we succeed in deriving the fractional quantum Hall effect and the integer quantum Hall effect; we find that the latter exists as a special case of the former. Moreover, using the derived expression describing the fractional quantum Hall effect, a relationship between the plateau in the resistivity of the sample and the applied magnetic field is obtained. The findings of this model agree well with experimental measurements. Because the two integers that describe the stationary 2-dimensional wave and the charge quantization along with the force balance have concrete physical meanings in this work, we could provide a clear picture of the origin of both the integer quantum Hall effect and the fractional quantum Hall effect.



2021 ◽  
Author(s):  
Ching Hua Lee ◽  
Ruizhe Shen

Abstract Strong, non-perturbative interactions often lead to new exciting physics, as epitomized by emergent anyons from the Fractional Quantum hall effect. Within the actively investigated domain of non-Hermitian physics, we discover a new family of states known as non-Hermitian skin clusters. Taking distinct forms as Vertex, Topological, Interface, Extended and Localized skin clusters, they generically originate from asymmetric correlated hoppings on a lattice, in the strongly interacting limit with quenched single-body energetics. Distinct from non-Hermitian skin modes which accumulate at boundaries, our skin clusters are predominantly translation invariant particle clusters. As purely interacting phenomena, they fall outside the purview of generalized Brillouin zone analysis, although our effective lattice formulation provides alternative analytic and topological characterization. Non-Hermitian skin clusters fundamentally originate from the fragmentation structure of the Hilbert space, and may thus be of significant interest in modern many-body contexts like the ETH and quantum scars.



2021 ◽  
Vol 2015 (1) ◽  
pp. 012127
Author(s):  
A D Rozenblit ◽  
N A Olekhno ◽  
A A Dmitriev ◽  
P S Seregin ◽  
M A Gorlach

Abstract Recent advances in two-particle topological quantum states demonstrate resilience to geometrical imperfections and hold perspectives for robust quantum computations. In this context, particles with fractional quantum statistics, the so-called anyons, attract especial attention. In particular, topological edge states of anyon pairs in one-dimensional chains of coupled cavities were recently predicted to demonstrate localization at one or another edge of the array depending on details of the quantum statistics. In this paper, propose an equivalent electric circuit serving as a classical emulator of such topological states. Detailed numerical studies of resonances in the circuit fully support theoretical predictions, pointing towards future experimental realizations of anyonic states analogs in electrical circuits.



2021 ◽  
Vol 104 (16) ◽  
Author(s):  
Wenchen Luo ◽  
Shenglin Peng ◽  
Hao Wang ◽  
Yu Zhou ◽  
Tapash Chakraborty


Sign in / Sign up

Export Citation Format

Share Document