PAINLEVÉ ANALYSIS FOR HAMILTONIAN SYSTEMS AND ITS JUSTIFICATION BY DIFFERENTIAL GALOIS THEORY

Author(s):  
H. YOSHIDA
2003 ◽  
Vol 70 (5) ◽  
pp. 732-738
Author(s):  
K. Yagasaki

We study a mathematical model for unforced and undamped, initially straight beams. This system is governed by an integro-partial differential equation, and its energy is conserved: It is an infinite-degree-of-freedom Hamiltonian system. We can derive “exact” finite-degree-of-freedom mode truncations for it. Using the differential Galois theory for Hamiltonian systems, we prove that any two or more modal truncations for the model are nonintegrable in the following sense: The Hamiltonian systems do not have the same number of “meromorphic” first complex integrals which are independent and in involution, as the number of their degrees of freedom, when they are regarded as Hamiltonian systems with complex time and coordinates. This also means the nonintegrability of the infinite-degree-of-freedom model for the beams. We present numerical simulation results and observe that chaotic motions occur as in typical nonintegrable Hamiltonian systems.


2009 ◽  
Vol 06 (08) ◽  
pp. 1357-1390 ◽  
Author(s):  
ANDRZEJ J. MACIEJEWSKI ◽  
MARIA PRZYBYLSKA

This paper is an overview of our works that are related to investigations of the integrability of natural Hamiltonian systems with homogeneous potentials and Newton's equations with homogeneous velocity independent forces. The two types of integrability obstructions for these systems are presented. The first, local ones, are related to the analysis of the differential Galois group of variational equations along a non-equilibrium particular solution. The second, global ones, are obtained from the simultaneous analysis of variational equations related to all particular solutions belonging to a certain class. The marriage of these two types of the integrability obstructions enables to realize the classification programme of all integrable homogeneous systems. The main steps of the integrability analysis for systems with two and more degrees of freedom as well as new integrable systems are shown.


Sign in / Sign up

Export Citation Format

Share Document