Derivatives of Black-Scholes Option Prices

2004 ◽  
Vol 07 (07) ◽  
pp. 901-907
Author(s):  
ERIK EKSTRÖM ◽  
JOHAN TYSK

There are two common methods for pricing European call options on a stock with known dividends. The market practice is to use the Black–Scholes formula with the stock price reduced by the present value of the dividends. An alternative approach is to increase the strike price with the dividends compounded to expiry at the risk-free rate. These methods correspond to different stock price models and thus in general give different option prices. In the present paper we generalize these methods to time- and level-dependent volatilities and to arbitrary contract functions. We show, for convex contract functions and under very general conditions on the volatility, that the method which is market practice gives the lower option price. For call options and some other common contracts we find bounds for the difference between the two prices in the case of constant volatility.


2017 ◽  
Vol 6 (2) ◽  
pp. 99
Author(s):  
I GEDE RENDIAWAN ADI BRATHA ◽  
KOMANG DHARMAWAN ◽  
NI LUH PUTU SUCIPTAWATI

Holding option contracts are considered as a new way to invest. In pricing the option contracts, an investor can apply the binomial tree method. The aim of this paper is to present how the European option contracts are calculated using binomial tree method with some different choices of strike prices. Then, the results are compared with the Black-Scholes method. The results obtained show the prices of call options contracts of European type calculated by the binomial tree method tends to be cheaper compared with the price of that calculated by the Black-Scholes method. In contrast to the put option prices, the prices calculated by the binomial tree method are slightly more expensive.


2008 ◽  
Vol 6 (3) ◽  
pp. 557-568 ◽  
Author(s):  
Jungmin Choi ◽  
Kyounghee Kim

2013 ◽  
Vol 50 (2) ◽  
pp. 557-575
Author(s):  
Michael R. Tehranchi

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that Xt=Wt+o(t1/4+ ε) as t↑∞ for any ε> 0.


2013 ◽  
Vol 50 (02) ◽  
pp. 557-575
Author(s):  
Michael R. Tehranchi

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale whose marginal laws agree with a geometric simple random walk. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Cox-Ross-Rubinstein binomial tree model.) Then S is a geometric simple random walk. (ii) (Continuous time) Suppose that S=S 0eσ X-σ2〈 X〉/2 is a continuous martingale whose marginal laws agree with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose that the initial option prices agree with the Black-Scholes model with volatility σ>0.) Then there exists a Brownian motion W such that X t =W t +o(t 1/4+ ε) as t↑∞ for any ε> 0.


2008 ◽  
Vol 16 (2) ◽  
pp. 67-94
Author(s):  
Byung Kun Rhee ◽  
Sang Won Hwang

Black-Scholes Imolied volatility (8SIV) has a few drawbacks. One is that the model Is not much successful in fitting the option prices. and It Is n야 guaranteed the model is correct one. Second. the usual tradition in using the BSIV is that only at-the-money Options are used. It is well-known that IV's of In-the-money or Qut-of-the-money ootions are much different from those estimated from near-the-money options. In this regard, a new model is confronted with Korean market data. Brittenxmes and Neuberger (2000) derive a formula for volatility which is a function of option prices‘ Since the formula is derived without using any option pricing model. volatility estimated from the formula is called model-tree implied volatillty (MFIV). MFIV overcomes the two drawbacks of BSIV. Jiang and Tian (2005) show that. with the S&P index Options (SPX), MFIV is suoerlor to historical volatility (HV) or BSIV in forecasting the future volatllity. In KOSPI 200 index options, when the forecasting performances are compared, MFIV is better than any other estimated volatilities. The hypothesis that MFIV contains all informations for realized volatility and the other volatilities are redundant is oot rejected in any cases.


Sign in / Sign up

Export Citation Format

Share Document