Periodic solutions of nonlinear parabolic equations with measure data and polynomial growth in |∇u|

Author(s):  
Abderrahmane El Hachimi ◽  
Abdelilah Lamrani Alaoui
2016 ◽  
Vol 23 (3) ◽  
pp. 303-321 ◽  
Author(s):  
Youssef Akdim ◽  
Abdelmoujib Benkirane ◽  
Mostafa El Moumni ◽  
Hicham Redwane

AbstractWe study the existence result of a renormalized solution for a class of nonlinear parabolic equations of the form${\partial b(x,u)\over\partial t}-\operatorname{div}(a(x,t,u,\nabla u))+g(x,t,u% ,\nabla u)+H(x,t,\nabla u)=\mu\quad\text{in }\Omega\times(0,T),$where the right-hand side belongs to ${L^{1}(Q_{T})+L^{p^{\prime}}(0,T;W^{-1,p^{\prime}}(\Omega))}$ and ${b(x,u)}$ is unbounded function of u, ${{-}\operatorname{div}(a(x,t,u,\nabla u))}$ is a Leray–Lions type operator with growth ${|\nabla u|^{p-1}}$ in ${\nabla u}$. The critical growth condition on g is with respect to ${\nabla u}$ and there is no growth condition with respect to u, while the function ${H(x,t,\nabla u)}$ grows as ${|\nabla u|^{p-1}}$.


2019 ◽  
Vol 5 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Mohammed Abdellaoui

AbstractOne of the recent advances in the investigation of nonlinear parabolic equations with a measure as forcing term is a paper by F. Petitta in which it has been introduced the notion of renormalized solutions to the initial parabolic problem in divergence form. Here we continue the study of the stability of renormalized solutions to nonlinear parabolic equations with measures but from a different point of view: we investigate the existence and uniqueness of the following nonlinear initial boundary value problems with absorption term and a possibly sign-changing measure data\left\{ {\matrix{ {b{{\left( u \right)}_t} - {\rm{div}}\left( {a\left( {t,x,u,\nabla u} \right)} \right) + h\left( u \right) = \mu } \hfill & {{\rm{in}}Q: = \left( {0,T} \right) \times {\rm{\Omega }},} \hfill \cr {u = 0} \hfill & {{\rm{on}}\left( {0,T} \right) \times \partial {\rm{\Omega }},} \hfill \cr {b\left( u \right) = b\left( {{u_0}} \right)} \hfill & {{\rm{in}}\,{\rm{\Omega }},} \hfill \cr } } \right.where Ω is an open bounded subset of ℝN, N ≥ 2, T > 0 and Q is the cylinder (0, T) × Ω, Σ = (0, T) × ∂Ω being its lateral surface, the operator is modeled on the p−Laplacian with p > 2 - {1 \over {N + 1}}, μ is a Radon measure with bounded total variation on Q, b is a C1−increasing function which satisfies 0 < b0 ≤ b′(s) ≤ b1 (for positive constants b0 and b1). We assume that b(u0) is an element of L1(Ω) and h : ℝ ↦ ℝ is a continuous function such that h(s) s ≥ 0 for every |s| ≥ L and L ≥ 0 (odd functions for example). The existence of a renormalized solution is obtained by approximation as a consequence of a stability result. We provide a new proof of this stability result, based on the properties of the truncations of renormalized solutions. The approach, which does not need the strong convergence of the truncations of the solutions in the energy space, turns out to be easier and shorter than the original one.


Sign in / Sign up

Export Citation Format

Share Document