very weak solutions
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Baishun Lai ◽  
Yifan Yang

In this paper, we consider the energy equality of the 3D Cauchy problem for the magneto-hydrodynamics (MHD) equations. We show that if a very weak solution of MHD equations belongs to $L^{4}(0,\,T;L^{4}(\mathbb {R}^{3}))$ , then it is actually in the Leray–Hopf class and therefore must satisfy the energy equality in the time interval $[0,\,T]$ .


2021 ◽  
pp. 1-15
Author(s):  
Le Trong Thanh Bui ◽  
Quoc-Hung Nguyen

In this paper, we give a short proof of the Lorentz estimates for gradients of very weak solutions to the linear parabolic equations with the Muckenhoupt class A q -weights u t − div ( A ( x , t ) ∇ u ) = div ( F ) , in a bounded domain Ω × ( 0 , T ) ⊂ R N + 1 , where A has a small mean oscillation, and Ω is a Lipchistz domain with a small Lipschitz constant.


Author(s):  
Domenico Angelo La Manna ◽  
Chiara Leone ◽  
Roberta Schiattarella

Abstract In this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .


2020 ◽  
Vol 365 ◽  
pp. 107041 ◽  
Author(s):  
Gabriele Grillo ◽  
Matteo Muratori ◽  
Fabio Punzo

2020 ◽  
Vol 268 (5) ◽  
pp. 2063-2088
Author(s):  
Michael Ruzhansky ◽  
Nurgissa Yessirkegenov

2020 ◽  
Vol 26 ◽  
pp. 20 ◽  
Author(s):  
Harbir Antil ◽  
Deepanshu Verma ◽  
Mahamadi Warma

In [Antil et al. Inverse Probl. 35 (2019) 084003.] we introduced a new notion of optimal control and source identification (inverse) problems where we allow the control/source to be outside the domain where the fractional elliptic PDE is fulfilled. The current work extends this previous work to the parabolic case. Several new mathematical tools have been developed to handle the parabolic problem. We tackle the Dirichlet, Neumann and Robin cases. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the control/source either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control/source in the exterior. We introduce the notions of weak and very-weak solutions to the fractional parabolic Dirichlet problem. We present an approach on how to approximate the fractional parabolic Dirichlet solutions by the fractional parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.


2019 ◽  
Vol 17 (06) ◽  
pp. 977-1003
Author(s):  
H. B. de Oliveira

The purpose of this work is to study the generalized Navier–Stokes equations with nonlinear viscosity that, in addition, can be fully anisotropic. Existence of very weak solutions is proved for the associated initial and boundary-value problem, supplemented with no-slip boundary conditions. We show that our existence result is optimal in some directions provided there is some compensation in the remaining directions. A particular simplification of the problem studied here, reduces to the Navier–Stokes equations with (linear) anisotropic viscosity used to model either the turbulence or the Ekman layer in atmospheric and oceanic fluid flows.


Author(s):  
Yeqing Zhu ◽  
Yanxia Zhou ◽  
Yuxia Tong

The paper deals with very weak solutions u to boundary value problems of the nonhomogeneous p-harmonic equation. We show that, any very weak solution u to the boundary value problem is integrable provided that r is sufficiently close to p.


Sign in / Sign up

Export Citation Format

Share Document