Gröbner–Shirshov bases for Lie algebras over a commutative algebra

2020 ◽  
pp. 93-114
2011 ◽  
Vol 337 (1) ◽  
pp. 82-102 ◽  
Author(s):  
L.A. Bokut ◽  
Yuqun Chen ◽  
Yongshan Chen

Author(s):  
A. W. Chatters

We introduce a concept of unique factorization for elements in the context of Noetherian rings which are not necessarily commutative. We will call an element p of such a ring R prime if (i) pR = Rp, (ii) pR is a height-1 prime ideal of R, and (iii) R/pR is an integral domain. We define a Noetherian u.f.d. to be a Noetherian integral domain R such that every height-1 prime P of R is principal and R/P is a domain, or equivalently every non-zero element of R is of the form cq, where q is a product of prime elements of R and c has no prime factors. Examples include the Noetherian u.f.d.'s of commutative algebra and also the universal enveloping algebras of solvable Lie algebras. The latter class provides a rich supply of genuinely non-commutative examples.


2009 ◽  
Vol 08 (02) ◽  
pp. 157-180 ◽  
Author(s):  
A. S. DZHUMADIL'DAEV

Generalizing Lie algebras, we consider anti-commutative algebras with skew-symmetric identities of degree > 3. Given a skew-symmetric polynomial f, we call an anti-commutative algebra f-Lie if it satisfies the identity f = 0. If sn is a standard skew-symmetric polynomial of degree n, then any s4-Lie algebra is f-Lie if deg f ≥ 4. We describe a free anti-commutative super-algebra with one odd generator. We exhibit various constructions of generalized Lie algebras, for example: given any derivations D, F of an associative commutative algebra U, the algebras (U, D ∧ F) and (U, id ∧ D2) are s4-Lie. An algebra (U, id ∧ D3 - 2D ∧ D2) is s'5-Lie, where s'5 is a non-standard skew-symmetric polynomial of degree 5.


Author(s):  
Helena Albuquerque ◽  
Elisabete Barreiro ◽  
A. J. Calderón ◽  
José M. Sánchez

We introduce the class of split Lie–Rinehart algebras as the natural extension of the one of split Lie algebras. We show that if [Formula: see text] is a tight split Lie–Rinehart algebra over an associative and commutative algebra [Formula: see text] then [Formula: see text] and [Formula: see text] decompose as the orthogonal direct sums [Formula: see text] and [Formula: see text], where any [Formula: see text] is a nonzero ideal of [Formula: see text], any [Formula: see text] is a nonzero ideal of [Formula: see text], and both decompositions satisfy that for any [Formula: see text], there exists a unique [Formula: see text] such that [Formula: see text]. Furthermore, any [Formula: see text] is a split Lie–Rinehart algebra over [Formula: see text]. Also, under mild conditions, it is shown that the above decompositions of [Formula: see text] and [Formula: see text] are by means of the family of their, respective, simple ideals.


Author(s):  
E. W. Wallace

SYNOPSISS. T. Tsou and A. G. Walker have defined the I-extension of a given Lie algebra as a certain Lie algebra on the Cartesian product of the given algebra and one of its ideals (Tsou 1955). I-extensions have been studied also in connection with metrisable Lie groups and metrisable Lie algebras. The definition can be applied immediately to any anti-commutative algebra, and in this paper properties of such I-extensions are established. A list of all proper I-extensions of dimension not greater than four over a field of characteristic zero is also given together with a set of characters.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Laurent Poinsot

The famous Poincaré-Birkhoff-Witt theorem states that a Lie algebra, free as a module, embeds into its associative envelope—its universal enveloping algebra—as a sub-Lie algebra for the usual commutator Lie bracket. However, there is another functorial way—less known—to associate a Lie algebra to an associative algebra and inversely. Any commutative algebra equipped with a derivation , that is, a commutative differential algebra, admits a Wronskian bracket under which it becomes a Lie algebra. Conversely, to any Lie algebra a commutative differential algebra is universally associated, its Wronskian envelope, in a way similar to the associative envelope. This contribution is the beginning of an investigation of these relations between Lie algebras and differential algebras which is parallel to the classical theory. In particular, we give a sufficient condition under which a Lie algebra may be embedded into its Wronskian envelope, and we present the construction of the free Lie algebra with this property.


2018 ◽  
Vol 2018 (2) ◽  
pp. 43-49
Author(s):  
R.K. Gaybullaev ◽  
Kh.A. Khalkulova ◽  
J.Q. Adashev

Sign in / Sign up

Export Citation Format

Share Document