Averaging problems of running processes associated with Brownian motion and applications

2015 ◽  
Vol 26 (03) ◽  
pp. 1550028
Author(s):  
Bao Quoc Ta

Recently the new technique to solve optimal stopping problems for Hunt processes is developed (see [S. Christensen, P. Salminen and B. Q. Ta, Optimal stopping of strong Markov processes, Stochastic Process. Appl. 123(3) (2013) 1138–1159]). The crucial feature of the approach is to utilize the representation of the r-excessive functions as expected suprema. However, it seems to be difficult when applying directly the approach to some concrete cases, e.g. one-sided problem for reflecting Brownian motion and two-sided problem for Brownian motion. In this paper, we review and exploit this approach to find explicit solutions of two problems above.

1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (03) ◽  
pp. 818-836 ◽  
Author(s):  
Luis H. R. Alvarez ◽  
Pekka Matomäki

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2031
Author(s):  
Mario Abundo ◽  
Enrica Pirozzi

This paper is devoted to the estimation of the entropy of the dynamical system {Xα(t),t≥0}, where the stochastic process Xα(t) consists of the fractional Riemann–Liouville integral of order α∈(0,1) of a Gauss–Markov process. The study is based on a specific algorithm suitably devised in order to perform the simulation of sample paths of such processes and to evaluate the numerical approximation of the entropy. We focus on fractionally integrated Brownian motion and Ornstein–Uhlenbeck process due their main rule in the theory and application fields. Their entropy is specifically estimated by computing its approximation (ApEn). We investigate the relation between the value of α and the complexity degree; we show that the entropy of Xα(t) is a decreasing function of α∈(0,1).


1983 ◽  
Vol 15 (02) ◽  
pp. 225-254 ◽  
Author(s):  
Ioannis Karatzas

We consider the problem of tracking a Brownian motion by a process of bounded variation, in such a way as to minimize total expected cost of both ‘action' and ‘deviation from a target state 0'. The former is proportional to the amount of control exerted to date, while the latter is being measured by a function which can be viewed, for simplicity, as quadratic. We discuss the discounted, stationary and finite-horizon variants of the problem. The answer to all three questions takes the form of exerting control in asingularmanner, in order not to exit from a certain region. Explicit solutions are found for the first and second questions, while the third is reduced to an appropriate optimal stopping problem. This reduction yields properties, as well as global upper and lower bounds, for the associated moving boundary. The pertinent Abelian and ergodic relationships for the corresponding value functions are also derived.


2017 ◽  
Vol 49 (1) ◽  
pp. 238-257 ◽  
Author(s):  
Sören Christensen ◽  
Paavo Salminen

Abstract We consider a class of impulse control problems for general underlying strong Markov processes on the real line, which allows for an explicit solution. The optimal impulse times are shown to be of a threshold type and the optimal threshold is characterised as a solution of a (typically nonlinear) equation. The main ingredient we use is a representation result for excessive functions in terms of expected suprema.


2014 ◽  
Vol 51 (03) ◽  
pp. 818-836 ◽  
Author(s):  
Luis H. R. Alvarez ◽  
Pekka Matomäki

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.


1967 ◽  
Vol 7 (1) ◽  
pp. 37-44
Author(s):  
B. Grigelionis

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: Б. Григелионис. Об эксцессивных функциях и оптимальных правилах остановки ступенчатых марковских процессов B. Grigelionis. Apie laiptuotų Markovo procesų ekscesyvines funkcijas ir optimalias sustabdymo taisykles


Sign in / Sign up

Export Citation Format

Share Document