uhlenbeck process
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 134)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013201
Author(s):  
Amir Shee ◽  
Debasish Chaudhuri

Abstract We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein–Uhlenbeck process for active speed generation. Using a Laplace transform approach, we describe and use a Fokker–Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of several such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze the dynamical crossovers, determined by the orientational persistence of activity, speed fluctuation and relaxation. The kurtosis of displacement shows positive and negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed and orientational fluctuations, respectively.


Risks ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Donatien Hainaut

This article proposes an interest rate model ruled by mean reverting Lévy processes with a sub-exponential memory of their sample path. This feature is achieved by considering an Ornstein–Uhlenbeck process in which the exponential decaying kernel is replaced by a Mittag–Leffler function. Based on a representation in term of an infinite dimensional Markov processes, we present the main characteristics of bonds and short-term rates in this setting. Their dynamics under risk neutral and forward measures are studied. Finally, bond options are valued with a discretization scheme and a discrete Fourier’s transform.


2021 ◽  
Vol 17 (2) ◽  
pp. 47-58
Author(s):  
R. H. Hirpara

Abstract This paper develops a stochastic equivalence approach for an Ornstein-Uhlenbeck process-driven power system. The concept of stochastic equivalence coupled with stochastic differential rule plays the important role to develop the stochastic equivalence approach of this paper. This paper also develops the prediction theory of power system dynamics with the OU process as well.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022107
Author(s):  
O Rusakov ◽  
Yu Yakubovich

Abstract Weconsider a PSI-process, that is a sequence of random variables (&), i = 0.1,…, which is subordinated by a continuous-time non-decreasing integer-valued process N(t): <K0 = ÇN(ty Our main example is when /V(t) itself is obtained as a subordination of the standard Poisson process 77(s) by a non-decreasing Lévy process S(t): N(t) = 77(S(t)).The values (&)one interprets as random claims, while their accumulated intensity S(t) is itself random. We show that in this case the process 7V(t) is a compound Poisson process of the stuttering type and its rate depends just on the value of theLaplace exponent of S(t) at 1. Under the assumption that the driven sequence (&) consists of i.i.d. random variables with finite variance we calculate a correlation function of the constructed PSI-process. Finally, we show that properly rescaled sums of such processes converge to the Ornstein-Uhlenbeck process in the Skorokhod space. We suppose that the results stated in the paper mightbe interesting for theorists and practitioners in insurance, in particular, for solution of reinsurance tasks.


2021 ◽  
Vol Volume 1 ◽  
Author(s):  
Giuseppe Gaeta

We classify simple symmetries for an Ornstein-Uhlenbeck process, describing a particle in an external force field $f(x)$. It turns out that for sufficiently regular (in a sense to be defined) forces there are nontrivial symmetries only if $f(x)$ is at most linear. We fully discuss the isotropic case, while for the non-isotropic we only deal with a generic situation (defined in detail in the text).


2021 ◽  
Vol 5 (4) ◽  
pp. 192
Author(s):  
Anas D. Khalaf ◽  
Anwar Zeb ◽  
Tareq Saeed ◽  
Mahmoud Abouagwa ◽  
Salih Djilali ◽  
...  

In this work, we present the analysis of a mixed weighted fractional Brownian motion, defined by ηt:=Bt+ξt, where B is a Brownian motion and ξ is an independent weighted fractional Brownian motion. We also consider the parameter estimation problem for the drift parameter θ>0 in the mixed weighted fractional Ornstein–Uhlenbeck model of the form X0=0;Xt=θXtdt+dηt. Moreover, a simulation is given of sample paths of the mixed weighted fractional Ornstein–Uhlenbeck process.


Author(s):  
Valentin Courgeau ◽  
Almut E. D. Veraart

AbstractWe consider the problem of modelling restricted interactions between continuously-observed time series as given by a known static graph (or network) structure. For this purpose, we define a parametric multivariate Graph Ornstein-Uhlenbeck (GrOU) process driven by a general Lévy process to study the momentum and network effects amongst nodes, effects that quantify the impact of a node on itself and that of its neighbours, respectively. We derive the maximum likelihood estimators (MLEs) and their usual properties (existence, uniqueness and efficiency) along with their asymptotic normality and consistency. Additionally, an Adaptive Lasso approach, or a penalised likelihood scheme, infers both the graph structure along with the GrOU parameters concurrently and is shown to satisfy similar properties. Finally, we show that the asymptotic theory extends to the case when stochastic volatility modulation of the driving Lévy process is considered.


Sign in / Sign up

Export Citation Format

Share Document