WEIGHT MODULES OVER SPLIT LIE ALGEBRAS

2013 ◽  
Vol 28 (05) ◽  
pp. 1350008 ◽  
Author(s):  
ANTONIO J. CALDERÓN MARTÍN ◽  
JOSÉ M. SÁNCHEZ-DELGADO

We study the structure of weight modules V with restrictions neither on the dimension nor on the base field, over split Lie algebras L. We show that if L is perfect and V satisfies LV = V and [Formula: see text], then [Formula: see text] with any Ii an ideal of L satisfying [Ii, Ik] = 0 if i ≠k and any Vj a (weight) submodule of V in such a way that for any j ∈J there exists a unique i ∈I such that IiVj ≠0, being Vj a weight module over Ii. Under certain conditions, it is shown that the above decomposition of V is by means of the family of its minimal submodules, each one being a simple (weight) submodule.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Antonio J. Calderón Martín

AbstractLet {({\mathfrak{H}},\mu,\alpha)} be a regular Hom-algebra of arbitrary dimension and over an arbitrary base field {{\mathbb{F}}}. A basis {{\mathcal{B}}=\{e_{i}\}_{i\in I}} of {{\mathfrak{H}}} is called multiplicative if for any {i,j\in I}, we have that {\mu(e_{i},e_{j})\in{\mathbb{F}}e_{k}} and {\alpha(e_{i})\in{\mathbb{F}}e_{p}} for some {k,p\in I}. We show that if {{\mathfrak{H}}} admits a multiplicative basis, then it decomposes as the direct sum {{\mathfrak{H}}=\bigoplus_{r}{{\mathfrak{I}}}_{r}} of well-described ideals admitting each one a multiplicative basis. Also, the minimality of {{\mathfrak{H}}} is characterized in terms of the multiplicative basis and it is shown that, in case {{\mathcal{B}}}, in addition, it is a basis of division, then the above direct sum is composed by means of the family of its minimal ideals, each one admitting a multiplicative basis of division.


2020 ◽  
Vol 25 (4) ◽  
pp. 1125-1160
Author(s):  
DIMITAR GRANTCHAROV ◽  
IVAN PENKOV
Keyword(s):  

Abstract We classify the simple bounded weight modules of the Lie algebras $$ \mathfrak{sl}\left(\infty \right),\kern0.5em \mathfrak{o}\left(\infty \right) $$ sl ∞ , o ∞ and $$ \mathfrak{sp}\left(\infty \right) $$ sp ∞ , and compute their annihilators in $$ U\left(\mathfrak{sl}\left(\infty \right)\right),\kern0.5em U\left(\mathfrak{o}\left(\infty \right)\right),\kern0.5em U\left(\mathfrak{sp}\left(\infty \right)\right) $$ U sl ∞ , U o ∞ , U sp ∞ , respectively.


2020 ◽  
Vol 27 (04) ◽  
pp. 807-820
Author(s):  
Guobo Chen

In this paper, we consider the tensor product modules of a class of non-weight modules and highest weight modules over the Virasoro algebra. We determine the necessary and sufficient conditions for such modules to be simple and the isomorphism classes among all these modules. Finally, we prove that these simple non-weight modules are new if the highest weight module over the Virasoro algebra is non-trivial.


2015 ◽  
Vol 18 (1) ◽  
pp. 170-197 ◽  
Author(s):  
Reinier Bröker ◽  
Everett W. Howe ◽  
Kristin E. Lauter ◽  
Peter Stevenhagen

AbstractWe study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.Supplementary materials are available with this article.


Author(s):  
A. Cant ◽  
C. A. Hurst

The algebraic structure of relativistic wave equations of the formis considered. This leads to the problem of finding all Lie algebrasLwhich contain the Lorentz Lie algebraso(3, 1) and also contain a “four-vector” αμa such anLgives rise to a family of wave equations. The simplest possibility is the Bhabha equations whereL≅so(5). Some authors have claimed that this is theonlyone, but it is shown that there are many other possibilities still in accord with physical requirements. Known facts about representations, along with Dynkin's theory of the embeddings of Lie algebras, are used to obtain a partial classification of wave equations. The discrete transformationsC, P, Tare also discussed, along with reality properties. Finally, a simple example of a family of wave equations based onL=sp(12) is considered in detail. Theso(3, 1) content and mass spectra are given for the low order members of the family, and the problem of causality is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document