scholarly journals DYNAMICAL SYMMETRY BREAKING IN A MINIMAL 3-3-1 MODEL

2012 ◽  
Vol 27 (26) ◽  
pp. 1250156 ◽  
Author(s):  
A. DOFF ◽  
A. A. NATALE

The gauge symmetry breaking in some versions of 3-3-1 models can be implemented dynamically because at the scale of a few TeVs the U(1)X coupling constant becomes strong. In this work, we consider the dynamical symmetry breaking in a minimal SU(3) TC × SU(3)L × U(1)X model, where we propose a new scheme to cancel the chiral anomalies, including two-index symmetric (6) technifermions, which incorporates naturally the walking behavior in the Technicolor (TC) sector. The composite scalar content of the model is minimal and all the symmetry breaking is implemented by a multiplet of technifermions. The choice of TC representations not only provides the anomaly cancelation with a walking behavior, but is crucial to promote the model's full dynamical symmetry breaking. We consider the dynamical generation of technigluon masses and, depending on the 3-3-1 symmetry breaking scale (μ331), we verify that the technigluon mass is strongly linked to the Z′ mass scale, for instance, if μ331 = 1 TeV , we have MZ′ > 1 TeV only if M TG < 350 GeV .

1990 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
Dariusz K Grech

We consider dynamical symmetry breaking through a tumbling mechanism for exotic representations of fermions in unified models. Possible ways to introduce U(I) gauge symmetry are also discussed. It is shown that the most attractive channel (MAC) hypothesis does not predict physically interesting results unless the peculiar assumption of the maximal preservation of the global SU(3)xU(l) symmetry is made. In such a case the model with two fermionic generations is obtained.


Sign in / Sign up

Export Citation Format

Share Document