breaking scale
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Thibaut Coudarchet ◽  
Hervé Partouche

Abstract We derive the masses acquired at one loop by massless scalars in the Neumann-Dirichlet sector of open strings, when supersymmetry is spontaneously broken. It is done by computing two-point functions of “boundary-changing vertex operators” inserted on the boundaries of the annulus and Möbius strip. This requires the evaluation of correlators of “excited boundary-changing fields,” which are analogous to excited twist fields for closed strings. We work in the type IIB orientifold theory compactified on T2× T4/ℤ2, where $$ \mathcal{N} $$ N = 2 supersymmetry is broken to $$ \mathcal{N} $$ N = 0 by the Scherk-Schwarz mechanism implemented along T2. Even though the full expression of the squared masses is complicated, it reduces to a very simple form when the lowest scale of the background is the supersymmetry breaking scale M3/2. We use our results to analyze in this regime the stability at the quantum level of the moduli fields arising in the Neumann-Dirichlet sector. This completes the study of ref. [32], where the quantum masses of all other types of moduli arising in the open- or closed-string sectors are derived. Ultimately, we identify all brane configurations that produce backgrounds without tachyons at one loop and yield an effective potential exponentially suppressed, or strictly positive with runaway behavior of M3/2.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Iosif Bena ◽  
Johan Blåbäck ◽  
Mariana Graña ◽  
Severin Lüst

Abstract We examine the mechanism of moduli stabilization by fluxes in the limit of a large number of moduli. We conjecture that one cannot stabilize all complex-structure moduli in F-theory at a generic point in moduli space (away from singularities) by fluxes that satisfy the bound imposed by the tadpole cancellation condition. More precisely, while the tadpole bound in the limit of a large number of complex-structure moduli goes like 1/4 of the number of moduli, we conjecture that the amount of charge induced by fluxes stabilizing all moduli grows faster than this, and is therefore larger than the allowed amount. Our conjecture is supported by two examples: K3 × K3 compactifications, where by using evolutionary algorithms we find that moduli stabilization needs fluxes whose induced charge is 44% of the number of moduli, and Type IIB compactifications on $$ \mathbbm{CP} $$ CP 3, where the induced charge of the fluxes needed to stabilize the D7-brane moduli is also 44% of the number of these moduli. Proving our conjecture would rule out de Sitter vacua obtained via antibrane uplift in long warped throats with a hierarchically small supersymmetry breaking scale, which require a large tadpole.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Gonzalo Alonso-Álvarez ◽  
Fatih Ertas ◽  
Joerg Jaeckel ◽  
Felix Kahlhoefer ◽  
Lennert J. Thormaehlen

Abstract The axion is much lighter than all other degrees of freedom introduced by the Peccei-Quinn mechanism to solve the strong CP problem. It is therefore natural to use an effective field theory (EFT) to describe its interactions. Loop processes calculated in the EFT may however explicitly depend on the ultraviolet cutoff. In general, the UV cutoff is not uniquely defined, but the dimensionful couplings suggest to identify it with the Peccei-Quinn symmetry-breaking scale. An example are K+ → π+ + a decays that will soon be tested to improved precision in NA62 and KOTO and whose amplitude is dominated by the term logarithmically dependent on the cutoff. In this paper, we critically examine the adequacy of using such a naive EFT approach to study loop processes by comparing EFT calculations with ones performed in complete QCD axion models. In DFSZ models, for example, the cutoff is found to be set by additional Higgs degrees of freedom and to therefore be much closer to the electroweak scale than to the Peccei-Quinn scale. In fact, there are non-trivial requirements on axion models where the cutoff scale of loop processes is close to the Peccei-Quinn scale, such that the naive EFT result is reproduced. This suggests that the existence of a suitable UV embedding may impose restrictions on axion EFTs. We provide an explicit construction of a model with suitable fermion couplings and find promising prospects for NA62 and IAXO.


Author(s):  
Hervé Partouche ◽  
Balthazar de Vaulchier

When supersymmetry is spontaneously broken at the tree level, the spectrum of the heterotic string compactified on orbifolds of tori contains an infinite number of potentially tachyonic modes. We show that this implies instabilities of Minkowski space–time, when the scale of supersymmetry breaking is of the order of the string scale. We derive the phase space structure of vacua in the case where the tachyonic spectrum contains a mode with trivial momenta and winding numbers along the internal directions not involved in the supersymmetry breaking.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gong jun Choi ◽  
Tsutomu T. Yanagida ◽  
Norimi Yokozaki

Abstract By extending a previously proposed conformal gauge mediation model, we construct a gauge-mediated SUSY breaking (GMSB) model where a SUSY-breaking scale, a messenger mass, the μ-parameter and the gravitino mass in a minimal supersymmetric (SUSY) Standard Model (MSSM) are all explained by a single mass scale, a R-symmetry breaking scale. We focus on a low scale SUSY-breaking scenario with the gravitino mass m3/2 = $$ \mathcal{O}(1)\mathrm{eV} $$ O 1 eV , which is free from the cosmological gravitino problem and relaxes the fine-tuning of the cosmological constant. Both the messenger and SUSY-breaking sectors are subject to a hidden strong dynamics with the conformality above the messenger mass threshold (and hence the name of the model “strongly interacting conformal gauge mediation”). In our model, the Higgs B-term is suppressed and a large tan β is predicted, resulting in the relatively light second CP-even Higgs and the CP-odd Higgs with a sizable production cross section. These Higgs bosons can be tested at future LHC experiments.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Arthur Hebecker ◽  
Sascha Leonhardt

Abstract We discuss the problem of metastable SUSY breaking in the landscape. While this is clearly crucial for the various de Sitter proposals, it is also interesting to consider the SUSY breaking challenge in the AdS context. For example, it could be that a stronger form of the non-SUSY AdS conjecture holds: it would forbid even metastable non-SUSY AdS in cases where the SUSY-breaking scale is parametrically above/below the AdS scale. At the technical level, the present paper proposes to break SUSY using the multi-cosine-shaped axion potentials which arise if a long winding trajectory of a ‘complex-structure axion’ appears in the large-complex-structure limit of a Calabi-Yau orientifold. This has been studied in the context of ‘Winding Inflation’, but the potential for SUSY breaking has not been fully explored. We discuss the application to uplifting LVS vacua, point out the challenges which one faces in the KKLT context, and consider the possibility of violating the non-SUSY AdS conjecture in the type-IIA setting of DGKT.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Rouzbeh Allahverdi ◽  
Igor Bröckel ◽  
Michele Cicoli ◽  
Jacek K. Osiński

Abstract Explicit string models which can realize inflation and low-energy supersymmetry are notoriously difficult to achieve. Given that sequestering requires very specific configurations, supersymmetric particles are in general expected to be very heavy implying that the neutralino dark matter should be overproduced in a standard thermal history. However, in this paper we point out that this is generically not the case since early matter domination driven by string moduli can dilute the dark matter abundance down to the observed value. We argue that generic features of string compactifications, namely a high supersymmetry breaking scale and late time epochs of modulus domination, might imply superheavy neutralino dark matter with mass around 1010–1011 GeV. Interestingly, this is the right range to explain the recent detection of ultra-high-energy neutrinos by IceCube and ANITA via dark matter decay.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
L. N. Granda ◽  
D. F. Jimenez

AbstractThe Mukhanov–Sasaki equation is deduced from linear perturbations for a general scalar-tensor model with non-minimal coupling to curvature, to the Gauss–Bonnet invariant and non-minimal kinetic coupling to curvature. The general formulas for the power spectra of the primordial scalar and tensor fluctuations are obtained for arbitrary coupling functions. The results have been applied to models with power-law, exponential, natural and double-well potentials. It was found that the presence of these non-minimal couplings affect the inflationary observables leading to values favored by the latest observations, while some interesting results like sub-planckian symmetry breaking scale in natural inflation and sub-planckian v.e.v. of the scalar filed in the double-well potential were obtained. The consistency with the reheating process was discussed and some numerical cases were shown. The equivalence of the model to a sector of generalized Galileons was shown and the functions that establish the correspondence were found.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract String theory has no parameter except the string scale MS, so the Planck scale MPl, the supersymmetry-breaking scale "Image missing", the electroweak scale mEW as well as the vacuum energy density (cosmological constant) Λ are to be determined dynamically at any local minimum solution in the string theory landscape. Here we consider a model that links the supersymmetric electroweak phenomenology (bottom up) to the string theory motivated flux compactification approach (top down). In this model, supersymmetry is broken by a combination of the racetrack Kähler uplift mechanism, which naturally allows an exponentially small positive Λ in a local minimum, and the anti-D3-brane in the KKLT scenario. In the absence of the Higgs doublets from the supersymmetric standard model, one has either a small Λ or a big enough "Image missing", but not both. The introduction of the Higgs fields (with their soft terms) allows a small Λ and a big enough "Image missing" simultaneously. Since an exponentially small Λ is statistically preferred (as the properly normalized probability distribution P(Λ) diverges at Λ = 0+), identifying the observed Λobs to the median value Λ50% yields mEW∼ 100 GeV. We also find that the warped anti-D3-brane tension has a SUSY-breaking scale "Image missing" ∼ 100 mEW while the SUSY-breaking scale that directly correlates with the Higgs fields in the visible sector is "Image missing" ≃ mEW.


Author(s):  
Naoyuki Haba ◽  
Yukihiro Mimura ◽  
Toshifumi Yamada

Abstract We study a renormalizable SUSY SO(10) GUT model where the Yukawa couplings of single 10, single $${\bf \overline{126}}$$ and single 120 fields, Y10, Y126, Y120, account for the quark and lepton Yukawa couplings and the neutrino mass. We pursue the possibility that Y10, Y126, Y120 reproduce the correct quark and lepton masses, CKM and PMNS matrices and neutrino mass differences, and at the same time suppress dimension-5 proton decays (proton decays via colored Higgsino exchange) through their texture, so that the soft SUSY breaking scale can be reduced as much as possible without conflicting the current experimental bound on proton decays. We perform a numerical search for such a texture, and investigate implications of that texture on unknown neutrino parameters, the Dirac CP phase of PMNS matrix, the lightest neutrino mass and the (1, 1)-component of the neutrino mass matrix in the charged lepton basis. Here we concentrate on the case when the active neutrino mass is generated mostly by the Type-2 seesaw mechanism, in which case we can obtain predictions for the neutrino parameters from the condition that dimension-5 proton decays be suppressed as much as possible.


Sign in / Sign up

Export Citation Format

Share Document