TOWARDS NONCOMMUTATIVE COMPUTING

2000 ◽  
Vol 14 (22n23) ◽  
pp. 2451-2454
Author(s):  
G. F. MASCARI

This paper presents first steps of an approach to quantum information processing in the framework of higher category theory from a noncommutative mathematics perspective. The aim is to provide a unifying theory for the structure and dynamics of composite quantum information processing systems, such that states, evolution, entanglement, decoherence are modeled by abstract categorical constructions and vice versa new mathematical structures arising from higher dimensional algebra could be "tested" as computational schemes and possibly realized by physical experiments.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuanyuan Chen ◽  
Sebastian Ecker ◽  
Lixiang Chen ◽  
Fabian Steinlechner ◽  
Marcus Huber ◽  
...  

AbstractHigh-dimensional quantum entanglement is currently one of the most prolific fields in quantum information processing due to its high information capacity and error resilience. A versatile method for harnessing high-dimensional entanglement has long been hailed as an absolute necessity in the exploration of quantum science and technologies. Here we exploit Hong-Ou-Mandel interference to manipulate discrete frequency entanglement in arbitrary-dimensional Hilbert space. The generation and characterization of two-, four- and six-dimensional frequency entangled qudits are theoretically and experimentally investigated, allowing for the estimation of entanglement dimensionality in the whole state space. Additionally, our strategy can be generalized to engineer higher-dimensional entanglement in other photonic degrees of freedom. Our results may provide a more comprehensive understanding of frequency shaping and interference phenomena, and pave the way to more complex high-dimensional quantum information processing protocols.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

2011 ◽  
Author(s):  
David G. Cory ◽  
Chandrasekhar Ramanathan ◽  
Raymond Laflamme ◽  
Joseph V. Emerson ◽  
Jonathan Baugh

Sign in / Sign up

Export Citation Format

Share Document