ROBUST STABILITY OF MULTI-DIMENSIONAL (m-D) DISCRETE INTERVAL SYSTEMS AND APPLICATIONS

1991 ◽  
Vol 01 (01) ◽  
pp. 93-104 ◽  
Author(s):  
P. BAUER

Robust stability of m-D discrete systems, represented by a m-D difference equation is analyzed. A sufficient condition for stability is derived, which requires the stability of one linear shift-invariant system. For special classes of systems, the stability of one corner of the interval system is a necessary and sufficient condition. The results are applicable to shift-variant and shift-invariant interval m-D systems. Applications and illustrative examples are also provided.

1996 ◽  
Vol 118 (3) ◽  
pp. 611-615 ◽  
Author(s):  
Jinsiang Shaw ◽  
Suhada Jayasuriya

Considered in this paper is the robust stability of a class of systems in which a relevant characteristic equation is a family of polynomials F: f(s, q) = a0(q) + a1(q)s + … + an(q)sn with its coefficients ai(q) depending linearly on q unknown-but-bounded parameters, q = (p1, p2, …, pq)T. It is known that a necessary and sufficient condition for determining the stability of such a family of polynomials is that polynomials at all the exposed edges of the polytope of F in the coefficient space be stable (the edge theorem of Bartlett et al., 1988). The geometric structure of such a family of polynomials is investigated and an approach is given, by which the number of edges of the polytope that need to be checked for stability can be reduced considerably. An example is included to illustrate the benefit of this geometric interpretation.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050095 ◽  
Author(s):  
Hamid Garmani ◽  
Driss Ait Omar ◽  
Mohamed El Amrani ◽  
Mohamed Baslam ◽  
Mostafa Jourhmane

This paper investigates the dynamical behaviors of a duopoly model with two content providers (CPs). Competition between two CPs is assumed to take place in terms of their pricing decisions and the credibility of content they offer. According to the CPs’ rationality level, we consider a scenario where both CPs are bounded rational. Each CP in any period uses the marginal profit observed from the previous period to choose its strategies. We compute explicitly the steady states of the dynamical system induced by bounded rationality, and establish a necessary and sufficient condition for stability of its Nash equilibrium (NE). Numerical simulations show that if some parameters of the model are varied, the stability of the NE point is lost and the complex (periodic or chaotic) behavior occurs. The chaotic behavior of the system is stabilized on the NE point by applying control.


Sign in / Sign up

Export Citation Format

Share Document