scholarly journals RATIONAL FIRST INTEGRALS FOR POLYNOMIAL VECTOR FIELDS ON ALGEBRAIC HYPERSURFACES OF ℝn+1

2012 ◽  
Vol 22 (11) ◽  
pp. 1250270 ◽  
Author(s):  
JAUME LLIBRE ◽  
YUDY BOLAÑOS

Using sophisticated techniques of Algebraic Geometry, Jouanolou in 1979 showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field in ℝn of degree m is at least [Formula: see text], then the vector field has a rational first integral. Llibre and Zhang used only Linear Algebra to provide a shorter and easier proof of the result given by Jouanolou. We use ideas of Llibre and Zhang to extend the Jouanolou result to polynomial vector fields defined on algebraic regular hypersurfaces of ℝn+1, this extended result completes the standard results of the Darboux theory of integrability for polynomial vector fields on regular algebraic hypersurfaces of ℝn+1.

2007 ◽  
Vol 79 (1) ◽  
pp. 13-16
Author(s):  
Albetã C. Mafra

This note is about the geometry of holomorphic foliations. Let X be a polynomial vector field with isolated singularities on C². We announce some results regarding two problems: 1. Given a finitely curved orbit L of X, under which conditions is L algebraic? 2. If X has some non-algebraic finitely curved orbit L what is the classification of X? Problem 1 is related to the following question: Let C <FONT FACE=Symbol>Ì</FONT> C² be a holomorphic curve which has finite total Gaussian curvature. IsC contained in an algebraic curve?


Sign in / Sign up

Export Citation Format

Share Document