holomorphic curve
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Ailsa Keating

AbstractWe present techniques, inspired by monodromy considerations, for constructing compact monotone Lagrangians in certain affine hypersurfaces, chiefly of Brieskorn–Pham type. We focus on dimensions 2 and 3, though the constructions generalise to higher ones. The techniques give significant latitude in controlling the homology class, Maslov class and monotonicity constant of the Lagrangian, and a range of possible diffeomorphism types; they are also explicit enough to be amenable to calculations of pseudo-holomorphic curve invariants. Applications include infinite families of monotone Lagrangian $$S^1 \times \Sigma _g$$ S 1 × Σ g in $${\mathbb {C}}^3$$ C 3 , distinguished by soft invariants for any genus $$g \ge 2$$ g ≥ 2 ; and, for fixed soft invariants, a range of infinite families of Lagrangians in Brieskorn–Pham hypersurfaces. These are generally distinct up to Hamiltonian isotopy. In specific cases, we also set up well-defined counts of Maslov zero holomorphic annuli, which distinguish the Lagrangians up to compactly supported symplectomorphisms. Inter alia, these give families of exact monotone Lagrangian tori which are related neither by geometric mutation nor by compactly supported symplectomorphisms.



2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Yingli Hou ◽  
Kui Ji ◽  
Linlin Zhao
Keyword(s):  


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.



Author(s):  
Joe Kamimoto

AbstractThe purpose of this paper is to investigate the geometric properties of real hypersurfaces of D’Angelo infinite type in $${{\mathbb {C}}}^n$$ C n . In order to understand the situation of flatness of these hypersurfaces, it is natural to ask whether there exists a nonconstant holomorphic curve tangent to a given hypersurface to infinite order. A sufficient condition for this existence is given by using Newton polyhedra, which is an important concept in singularity theory. More precisely, equivalence conditions are given in the case of some model hypersurfaces.



Author(s):  
Dinh Tuan Huynh ◽  
Duc-Viet Vu

AbstractLet {f:\mathbb{C}\to X} be a transcendental holomorphic curve into a complex projective manifold X. Let L be a very ample line bundle on {X.} Let s be a very generic holomorphic section of L and D the zero divisor given by {s.} We prove that the geometric defect of D (defect of truncation 1) with respect to f is zero. We also prove that f almost misses general enough analytic subsets on X of codimension 2.



2019 ◽  
Vol 155 (10) ◽  
pp. 1924-1958
Author(s):  
Jake P. Solomon ◽  
Misha Verbitsky

Let $(M,I,J,K,g)$ be a hyperkähler manifold. Then the complex manifold $(M,I)$ is holomorphic symplectic. We prove that for all real $x,y$, with $x^{2}+y^{2}=1$ except countably many, any finite-energy $(xJ+yK)$-holomorphic curve with boundary in a collection of $I$-holomorphic Lagrangians must be constant. By an argument based on the Łojasiewicz inequality, this result holds no matter how the Lagrangians intersect each other. It follows that one can choose perturbations such that the holomorphic polygons of the associated Fukaya category lie in an arbitrarily small neighborhood of the Lagrangians. That is, the Fukaya category is local. We show that holomorphic Lagrangians are tautologically unobstructed. Moreover, the Fukaya $A_{\infty }$ algebra of a holomorphic Lagrangian is formal. Our result also explains why the special Lagrangian condition holds without instanton corrections for holomorphic Lagrangians.



2019 ◽  
Vol 30 (09) ◽  
pp. 1950035
Author(s):  
Stefan Müller

We present a novel [Formula: see text]-characterization of symplectic embeddings and diffeomorphisms in terms of Lagrangian embeddings. Our approach is based on the shape invariant, which was discovered by Sikorav and Eliashberg, intersection theory and the displacement energy of Lagrangian submanifolds, and the fact that non-Lagrangian submanifolds can be displaced immediately. This characterization gives rise to a new proof of [Formula: see text]-rigidity of symplectic embeddings and diffeomorphisms. The various manifestations of Lagrangian rigidity that are used in our arguments come from [Formula: see text]-holomorphic curve methods. An advantage of our techniques is that they can be adapted to a [Formula: see text]-characterization of contact embeddings and diffeomorphisms in terms of coisotropic (or pre-Lagrangian) embeddings, which in turn leads to a proof of [Formula: see text]-rigidity of contact embeddings and diffeomorphisms. We give a detailed treatment of the shape invariants of symplectic and contact manifolds, and demonstrate that shape is often a natural language in symplectic and contact topology. We consider homeomorphisms that preserve shape, and propose a hierarchy of notions of Lagrangian topological submanifold. Moreover, we discuss shape-related necessary and sufficient conditions for symplectic and contact embeddings, and define a symplectic capacity from the shape.



Author(s):  
Nguyen Thi Kim Son ◽  
Chu Van Tiep

 Abstract: The purpose of this article is to show that there exists a smooth real hypersurface germ  of D'Angelo infinite type in  such that it does not admit any (singular) holomorphic curve that has infinite order contact with  at . 2010 Mathematics Subject Classification. Primary 32T25; Secondary 32C25. Key words and phrases:  Holomorphic vector field, automorphism group, real hypersurface, infinite type point.  



2017 ◽  
Vol 120 (2) ◽  
pp. 149-161
Author(s):  
Nan Wu
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document