Slow-Fast Autonomous Dynamical Systems

1998 ◽  
Vol 08 (11) ◽  
pp. 2135-2145 ◽  
Author(s):  
Bruno Rossetto ◽  
Thierry Lenzini ◽  
Sofiane Ramdani ◽  
Gilles Suchey

In this paper, we consider a class of slow-fast autonomous dynamical systems, i.e. systems having a small parameter ∊ multiplying a component of velocity. At first, the singular perturbation method (∊ = 0+) is recalled. Then we consider the case ∊ ≠ 0. Starting from a working hypothesis and particularly in the case of a singular approximation, our purpose is to show that there exists slow manifolds which can be defined as the slow manifolds of a so-called tangent linear system. The method allowed us to plot the slow manifold and to go further into the qualitative study and the geometric characterization of attractors. As an example, we give the explicit slow manifold equation of the van der Pol limit cycle. The value of the parameter corresponding to bifurcations is computed. Other third order systems are also treated. The method is extended to dynamical systems with no small parameter, and, therefore, which have no singular approximations, but have at least one real and negative eigenvalue in a large domain. It is numerically shown from the Lorenz model and from a laser model that there exists slow manifolds which can be defined as the slow manifods of a so-called tangent linear system, as in the previous cases. The implicit equation of these slow manifolds has been calculated too.

2000 ◽  
Vol 10 (12) ◽  
pp. 2729-2744 ◽  
Author(s):  
SOFIANE RAMDANI ◽  
BRUNO ROSSETTO ◽  
LEON O. CHUA ◽  
RENÉ LOZI

In this work we deal with slow–fast autonomous dynamical systems. We initially define them as being modeled by systems of differential equations having a small parameter multiplying one of their velocity components. In order to analyze their solutions, some being chaotic, we have proposed a mathematical analytic method based on an iterative approach [Rossetto et al., 1998]. Under some conditions, this method allows us to give an analytic equation of the slow manifold. This equation is obtained by considering that the slow manifold is locally defined by a plane orthogonal to the tangent system's left fast eigenvector. In this paper, we give another method to compute the slow manifold equation by using the tangent system's slow eigenvectors. This method allows us to give a geometrical characterization of the attractor and a global qualitative description of its dynamics. The method used to compute the equation of the slow manifold has been extended to systems having a real and negative eigenvalue in a large domain of the phase space, as it is the case with the Lorenz system. Indeed, we give the Lorenz slow manifold equation and this allows us to make a qualitative study comparing this model and Chua's model. Finally, we apply our results to derive the slow manifold equations of a nonlinear optical slow–fast system, namely, the optical parametric oscillator model.


Author(s):  
Xiaopeng Chen ◽  
Jinqiao Duan

The decomposition of state spaces into dynamically different components is helpful for understanding dynamics of complex systems. A Conley-type decomposition theorem is proved for non-autonomous dynamical systems defined on a non-compact but separable state space. Specifically, the state space can be decomposed into a chain-recurrent part and a gradient-like part. This result applies to both non-autonomous ordinary differential equations on a Euclidean space (which is only locally compact), and to non-autonomous partial differential equations on an infinite-dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier–Stokes system, under time-dependent forcing.


2019 ◽  
Vol 100 (1) ◽  
pp. 76-85
Author(s):  
RYSZARD J. PAWLAK ◽  
JUSTYNA POPRAWA

We analyse local aspects of chaos for nonautonomous periodic dynamical systems in the context of generating autonomous dynamical systems and the possibility of disturbing them.


1995 ◽  
Vol 15 (1) ◽  
pp. 175-207 ◽  
Author(s):  
A. Zeghib

AbstractWe introduce a notion of autonomous dynamical systems which generalizes algebraic dynamical systems. We show by giving examples and by describing some properties that this generalization is not a trivial one. We apply the methods then developed to algebraic Anosov systems. We prove that a C1-submanifold of finite volume, which is invariant by an algebraic Anosov system is ‘essentially’ algebraic.


2006 ◽  
Vol 16 (04) ◽  
pp. 887-910 ◽  
Author(s):  
JEAN-MARC GINOUX ◽  
BRUNO ROSSETTO

The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and torsion will directly provide the analytical expression of the slow manifold equation of slow-fast autonomous dynamical systems starting from kinematics variables (velocity, acceleration and over-acceleration or jerk). The attractivity of the slow manifold will be characterized thanks to a criterion proposed by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one hand to define slow and fast domains of the phase space and on the other hand, to provide an analytical equation of the slow manifold towards which all the trajectories converge. The attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to propose a description of the geometrical structure of attractor, a new manifold called singular manifold will be introduced. Various applications of this new approach to the models of Van der Pol, cubic-Chua, Lorenz, and Volterra–Gause are proposed.


Sign in / Sign up

Export Citation Format

Share Document