SLOW MANIFOLDS OF SOME CHAOTIC SYSTEMS WITH APPLICATIONS TO LASER SYSTEMS

2000 ◽  
Vol 10 (12) ◽  
pp. 2729-2744 ◽  
Author(s):  
SOFIANE RAMDANI ◽  
BRUNO ROSSETTO ◽  
LEON O. CHUA ◽  
RENÉ LOZI

In this work we deal with slow–fast autonomous dynamical systems. We initially define them as being modeled by systems of differential equations having a small parameter multiplying one of their velocity components. In order to analyze their solutions, some being chaotic, we have proposed a mathematical analytic method based on an iterative approach [Rossetto et al., 1998]. Under some conditions, this method allows us to give an analytic equation of the slow manifold. This equation is obtained by considering that the slow manifold is locally defined by a plane orthogonal to the tangent system's left fast eigenvector. In this paper, we give another method to compute the slow manifold equation by using the tangent system's slow eigenvectors. This method allows us to give a geometrical characterization of the attractor and a global qualitative description of its dynamics. The method used to compute the equation of the slow manifold has been extended to systems having a real and negative eigenvalue in a large domain of the phase space, as it is the case with the Lorenz system. Indeed, we give the Lorenz slow manifold equation and this allows us to make a qualitative study comparing this model and Chua's model. Finally, we apply our results to derive the slow manifold equations of a nonlinear optical slow–fast system, namely, the optical parametric oscillator model.

1998 ◽  
Vol 08 (11) ◽  
pp. 2135-2145 ◽  
Author(s):  
Bruno Rossetto ◽  
Thierry Lenzini ◽  
Sofiane Ramdani ◽  
Gilles Suchey

In this paper, we consider a class of slow-fast autonomous dynamical systems, i.e. systems having a small parameter ∊ multiplying a component of velocity. At first, the singular perturbation method (∊ = 0+) is recalled. Then we consider the case ∊ ≠ 0. Starting from a working hypothesis and particularly in the case of a singular approximation, our purpose is to show that there exists slow manifolds which can be defined as the slow manifolds of a so-called tangent linear system. The method allowed us to plot the slow manifold and to go further into the qualitative study and the geometric characterization of attractors. As an example, we give the explicit slow manifold equation of the van der Pol limit cycle. The value of the parameter corresponding to bifurcations is computed. Other third order systems are also treated. The method is extended to dynamical systems with no small parameter, and, therefore, which have no singular approximations, but have at least one real and negative eigenvalue in a large domain. It is numerically shown from the Lorenz model and from a laser model that there exists slow manifolds which can be defined as the slow manifods of a so-called tangent linear system, as in the previous cases. The implicit equation of these slow manifolds has been calculated too.


2015 ◽  
Vol 18 (6) ◽  
pp. 637-652 ◽  
Author(s):  
Prashant Kumar ◽  
Frederic Topin ◽  
Lounes Tadrist

Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.


2016 ◽  
Vol 87 (12) ◽  
pp. 123105 ◽  
Author(s):  
J. Zhang ◽  
X. H. Shi ◽  
X. Y. Zeng ◽  
X. L. Lü ◽  
K. Deng ◽  
...  

2017 ◽  
Vol 269 (3) ◽  
pp. 259-268 ◽  
Author(s):  
ELIJAH SHELTON ◽  
FRIEDHELM SERWANE ◽  
OTGER CAMPÀS

Author(s):  
Xiaopeng Chen ◽  
Jinqiao Duan

The decomposition of state spaces into dynamically different components is helpful for understanding dynamics of complex systems. A Conley-type decomposition theorem is proved for non-autonomous dynamical systems defined on a non-compact but separable state space. Specifically, the state space can be decomposed into a chain-recurrent part and a gradient-like part. This result applies to both non-autonomous ordinary differential equations on a Euclidean space (which is only locally compact), and to non-autonomous partial differential equations on an infinite-dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier–Stokes system, under time-dependent forcing.


2006 ◽  
Vol 253 (3) ◽  
pp. 1291-1298 ◽  
Author(s):  
L. Labajos-Broncano ◽  
J.A. Antequera-Barroso ◽  
M.L. González-Martín ◽  
J.M. Bruque

1992 ◽  
Vol 06 (11n12) ◽  
pp. 2109-2121
Author(s):  
M. CARFORA ◽  
M. MARTELLINI ◽  
A. MARZUOLI

We provide a non-perturbative geometrical characterization of the partition function of ndimensional quantum gravity based on a rough classification of Riemannian geometries. We show that, under natural geometrical constraints, the theory admits a continuum limit with a non-trivial phase structure parametrized by the homotopy types of the class of manifolds considered. The results obtained qualitatively coincide, when specialized to dimension two, with those of two-dimensional quantum gravity models based on random triangulations of surfaces.


Sign in / Sign up

Export Citation Format

Share Document