scholarly journals PROPER ACTIONS OF AUTOMORPHISM GROUPS OF FREE PRODUCTS OF FINITE GROUPS

2005 ◽  
Vol 15 (02) ◽  
pp. 255-272 ◽  
Author(s):  
YUQING CHEN ◽  
HENRY H. GLOVER ◽  
CRAIG A. JENSEN

If G is a free product of finite groups, let Σ Aut 1(G) denote all (necessarily symmetric) automorphisms of G that do not permute factors in the free product. We show that a McCullough–Miller and Gutiérrez–Krstić derived (also see Bogley–Krstić) space of pointed trees is an [Formula: see text]-space for these groups.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


2004 ◽  
Vol 14 (05n06) ◽  
pp. 751-772 ◽  
Author(s):  
LUIS RIBES ◽  
PAVEL ZALESSKII

Let [Formula: see text] be a nonempty class of finite groups closed under taking subgroups, quotients and extensions. We consider groups G endowed with their pro-[Formula: see text] topology, and say that G is 2-subgroup separable if whenever H and K are finitely generated closed subgroups of G, then the subset HK is closed. We prove that if the groups G1 and G2 are 2-subgroup separable, then so is their free product G1*G2. This extends a result to T. Coulbois. The proof uses actions of groups on abstract and profinite trees.


2017 ◽  
Vol 20 (5) ◽  
Author(s):  
Andrey M. Mazhuga

AbstractFor a subgroup of a free product of finite groups, we obtain necessary conditions (on its Kurosh decomposition) for it to be verbally closed.


1963 ◽  
Vol 59 (3) ◽  
pp. 555-558 ◽  
Author(s):  
A. M. Macbeath

In this note a simple principle is explained for constructing a transformation group which is a free product of given transformation groups. The principle does not seem to have been formulated explicitly, though it has been used in a more or less vague form in the theory of discontinuous groups (see, for instance, L. R. Ford, Automorphic functions, vol. I, pp. 56–59). It is perhaps of interest that the formulation given here is purely set-theoretic, without any topology, and that it can apply to any free product, whatever the cardinal number of the set of factors. The principle is used to establish the closure under the formation of countable free product of the family of groups which can be represented as discontinuous subgroups of a certain group of rational projective transformations. (The word ‘discontinuous’ is used here in a weak sense, defined later.) Finally, these results are applied to give a new proof of the theorem of Gruenberg that a free product of residually finite groups is itself residually finite (K. W. Gruenberg: Residual properties of groups, Proc. London Math. Soc. (3), 7 (1957), 29–62. See Corollary (ii) of Theorem 4.1, p. 44). The present proof is completely different from Gruenberg's and seems to be of interest for its own sake, though it does not appear to lead to Gruenberg's other results in this connexion. I have to thank Mr W. J. Harvey and Mr C. Maclachlan for checking a first draft of this paper and pointing out a few errors.


Author(s):  
Shoichi Kondo

This paper proves that the infinite dihedral group is only such a free product of two finite groups that its group algebra over a field [Formula: see text] is a CS-ring in case the orders of two groups are not zero in [Formula: see text]. Furthermore, it is shown that the group algebra of any free product of two finite cyclic groups does not satisfy the condition [Formula: see text].


2007 ◽  
Vol 310 (1) ◽  
pp. 57-69
Author(s):  
N.S. Romanovskii ◽  
John S. Wilson

1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.


2016 ◽  
Vol 38 (4) ◽  
pp. 1588-1600 ◽  
Author(s):  
VILLE SALO

We discuss the set of subgroups of the automorphism group of a full shift and submonoids of its endomorphism monoid. We prove closure under direct products in the monoid case and free products in the group case. We also show that the automorphism group of a full shift embeds in that of an uncountable sofic shift. Some undecidability results are obtained as corollaries.


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


Sign in / Sign up

Export Citation Format

Share Document