ALE–VMS formulation for stratified turbulent incompressible flows with applications

2015 ◽  
Vol 25 (12) ◽  
pp. 2349-2375 ◽  
Author(s):  
Y. Bazilevs ◽  
A. Korobenko ◽  
J. Yan ◽  
A. Pal ◽  
S. M. I. Gohari ◽  
...  

A numerical formulation for incompressible flows with stable stratification is developed using the framework of variational multiscale methods. In the proposed formulation, both density and temperature stratification are handled in a unified manner. The formulation is augmented with weakly-enforced essential boundary conditions and is suitable for applications involving moving domains, such as fluid–structure interaction. The methodology is tested using three numerical examples ranging from flow-physics benchmarks to a simulation of a full-scale offshore wind-turbine rotor spinning inside an atmospheric boundary layer. Good agreement is achieved with experimental and computational results reported by other researchers. The wind-turbine rotor simulation shows that flow stratification has a strong influence on the dynamic rotor thrust and torque loads.

Author(s):  
Kai Zhang ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and mid-fidelity aerodynamic modelling of floating offshore wind turbine rotors. The low-fidelity approach employs the conventional Blade Element Momentum theory implemented in AeroDyn of OpenFAST. This model ignores the aerodynamic interactions between different blade elements, and the forces on the blade are determined from the balance between momentum theory and blade element theory. With this method, it is possible to calculate the aerodynamic performance for different settings with low computational cost. For the mid-fidelity approach, the Actuator Line Modeling method implemented in turbinesFoam (an OpenFOAM library) is used. This method is built upon a combination of the blade element theory for modeling the blades, and a Navier-Stokes description of the wake flow field. Thus, it can capture the wake dynamics without resolving the detailed flows near the blades. The aerodynamic performance of the DTU 10 MW reference wind turbine rotor is studied using the two methods. The effects of wind speed, tip speed ratio, and blade pitch angles are assessed. Good agreement is observed between the two methods at low tip speed ratios, while the Actuator Line Modeling method predicts slightly higher power coefficients at high tip speed ratios. In addition, the ability of the Actuator Line Modeling Method to capture the wake dynamics of the rotor in an unsteady inflow is demonstrated. In the future, the multi-fidelity aerodynamic modules developed in this paper will be integrated with the hydro-kinematics and hydro-dynamics of a floating platform and a mooring system, to achieve a fully coupled framework for the analysis and design optimization of floating offshore wind turbines.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2578 ◽  
Author(s):  
Krishnamoorthi Sivalingam ◽  
Steven Martin ◽  
Abdulqadir Singapore Wala

Aerodynamic performance of a floating offshore wind turbine (FOWT) is significantly influenced by platform surging motions. Accurate prediction of the unsteady aerodynamic loads is imperative for determining the fatigue life, ultimate loads on key components such as FOWT rotor blades, gearbox and power converter. The current study examines the predictions of numerical codes by comparing with unsteady experimental results of a scaled floating wind turbine rotor. The influence of platform surge amplitude together with the tip speed ratio on the unsteady aerodynamic loading has been simulated through unsteady CFD. It is shown that the unsteady aerodynamic loads of FOWT are highly sensitive to the changes in frequency and amplitude of the platform motion. Also, the surging motion significantly influences the windmill operating state due to strong flow interaction between the rotating blades and generated blade-tip vortices. Almost in all frequencies and amplitudes, CFD, LR-BEM and LR-uBEM predictions of mean thrust shows a good correlation with experimental results.


Author(s):  
Muk Chen Ong ◽  
Erin E. Bachynski ◽  
Ole D. Økland ◽  
Elizabeth Passano

This paper presents numerical studies of the dynamic responses of a jacket-type offshore wind turbine using both decoupled and coupled models. In the decoupled (hydroelastic) model, the wind load is included through time-dependent forces and moments at a single node on the top of the tower. The coupled model is a hydro-servo-aero-elastic representation of the system. The investigated structure is the OC4 (Offshore Code Comparison Collaboration Continuation) jacket foundation supporting the NREL 5-MW wind turbine in a water depth of 50m. Different operational wind and wave loadings at an offshore site with relatively high soil stiffness are investigated. The objective of this study is to evaluate the applicability of the computationally efficient linear decoupled model by comparing with the results obtained from the nonlinear coupled model. Good agreement was obtained in the eigen-frequency analysis, decay tests, and wave-only simulations. In order to obtain good results in the combined wind and wave simulations, two different strategies were applied in the decoupled model, which are 1) Wind loads obtained from the coupled model were applied directly as time-dependent point loads in the decoupled model; and 2) The thrust and torque from an isolated rotor model were used as wind loads on the decoupled model together with a linear aerodynamic damper. It was found that, by applying the thrust force from an isolated rotor model in combination with linear damping, reasonable agreement could be obtained between the decoupled and coupled models in combined wind and wave simulations.


Author(s):  
Ling Ling Yin ◽  
King Him Lo ◽  
Su Su Wang

The effect of pile-soil interaction on structural dynamics is investigated for a large offshore wind turbine in the hurricane-prone Western Gulf of Mexico (GOM) shallow water. The offshore wind turbine has a rotor with three 100-meter blades and a mono-tower structure. Loads on the turbine rotor and the support structure subject to a 100-year return hurricane are determined. Several types of soil are considered and modeled with a distributed spring system. The results reveal that pile-soil interaction affects dynamics of the turbine support structure significantly, but not the wind rotor dynamics. Designed with proper pile lengths, natural frequencies of the turbine structure in different soils stay outside dominant frequencies of wave energy spectra in both normal operating and hurricane sea states, but stay between blade passing frequency intervals. Hence potential resonance of the turbine support structure is not of concern. A comprehensive Campbell diagram is constructed for safe operation of the offshore turbine in different soils.


Author(s):  
Krishnamoorthi Sivalingam ◽  
Steven Martin ◽  
Abdulqadir Aziz Singapore Wala

Aerodynamic performance of a floating offshore wind turbine (FOWT) is significantly influenced by platform surging motions. Accurate prediction of the unsteady aerodynamic loads is imperative for determining the fatigue life, ultimate loads on key components such as FOWT rotor blades, gearbox and power converter. The current study examines the predictions of numerical codes by comparing with unsteady experimental results of a scaled floating wind turbine rotor. The influence of platform surge amplitude together with the tip speed ratio on the unsteady aerodynamic loading has been simulated through unsteady CFD. It is shown that the unsteady aerodynamic loads of FOWT are highly sensitive to the changes in frequency and amplitude of the platform motion. Also, the surging motion significantly influences the windmill operating state due to strong flow interaction between the rotating blades and generated blade-tip vortices. Almost in all frequencies and amplitudes, CFD, LR-BEM and LR-uBEM predictions of mean thrust shows a good correlation with experimental results.


Sign in / Sign up

Export Citation Format

Share Document