Volume 10: Fluids Engineering
Latest Publications


TOTAL DOCUMENTS

65
(FIVE YEARS 65)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884584

Author(s):  
Rahul Verma ◽  
George Horiates ◽  
Nicholas Kanellis

Abstract In this study, a segment of water conveyance system at a chemical manufacturing facility is under investigation. The pipe segment under investigation conveys a daily average flow of five million gallons of water per day (MGD) from the river to a water treatment plant. The exact age of the pipe system is unknown as limited construction or maintenance information exists. The study area is a pipe segment near the treatment plant where three flow restrictions exist within a 30-foot distance bounded by a T-junction and a water filtration plant. These restrictions include two self-actuated butterfly valves and an orifice plate on a 16-inch diameter steel pipe, buried approximately three feet below ground surface. When standing in the study area, heavy vibrations are felt at the ground surface. The valves and orifice plate are to control flowrate and reduce pressure from 80 PSI to 45PSI as the flow enters the water treatment plant. Flow restrictions in close proximity can cause cavitation, water hammer and other flow phenomena within a pipe system. This can result in excessive wear of the pipe’s inner walls and valves which may compromise the structural integrity and/or function of the system. Computational fluid dynamics (CFD) software is a useful tool for determining if the conditions for the various flow phenomena are present in a system. The flow characteristics were numerically calculated in MATLAB then computationally modeled in AFT Fathom. The purpose of the numerical analysis was to describe the stability of the fluid flow at discrete points in the pipe network and identify the network segments with significantly unstable flow profiles. The purpose of the AFT Fathom CFD model purpose was to provide a continuous simulation of the flow stability in the pipe segment and provide a more robust description of the flow profiles in the network. While Fathom cannot explicitly predict cavitation or water hammer, the kinematic parameters produced by the Fathom model and the physical conditions observed in the study indicate that water hammer is likely occurring.


Author(s):  
E. Kucukal ◽  
Y. Man ◽  
U. A. Gurkan ◽  
B. E. Schmidt

Abstract This article describes novel measurements of the velocity of whole blood flow in a microchannel during coagulation. The blood is imaged volumetrically using a simple optical setup involving a white light source and a microscope camera. The images are processed using PIV and wavelet-based optical flow velocimetry (wOFV), both of which use images of individual blood cells as flow tracers. Measurements of several clinically relevant parameters such as the clotting time, decay rate, and blockage ratio are computed. The high-resolution wOFV results yield highly detailed information regarding thrombus formation and corresponding flow evolution that is the first of its kind.


Author(s):  
Abdennour C. Seibi ◽  
Brandon Salazar ◽  
Jalel Ben Hmida ◽  
Gordon Guillory

Abstract The lack of cutting transportation during drilling operations especially in horizontal and inclined wells can lead to large amounts of non-productive time and costly solutions. This problem has been encountered very often in the field due mostly to settlement of the cuttings at the bottom side of the hole and especially around pipe joints. Moreover, adopted rheological models are limited to 60 deg. inclination angle to predict the flow behavior of cuttings transport in directional wells. Therefore, the objective of this paper is to investigate the effect of various parameters related to the well configuration (inclined vs. horizontal), operating conditions, pipe/tool joints configurations, and flow conditions on the cutting velocity through an extensive experimental study with data analytics. The experimental approach was analyzed through film software, which allowed for the cutting velocities to be estimated. Regression models of cutting velocity with respect to each dimensionless group were formed and validated through a statistical analysis. A new empirical model for the cutting velocity was developed using multiple linear regression analyses. A sensitivity analysis was conducted to highlight the contribution of each dimensionless group on the variation of the cutting velocity. The newly proposed model for cutting velocity was tested and the calculated cutting velocity of 0.532 ft/s (.162 m/s) fell within the range of study between 0.188 ft/s (.057 m/s) and 0.690 ft/s (.210 m/s).


Author(s):  
Michael Steppert ◽  
Philipp Epple ◽  
Michael Steber ◽  
Stefan Gast

Abstract PPV Fans (Positive Pressure Ventilation Fans) are used in firefighting to remove smoke from a burning building, so that fire fighters can have a clear view inside the house and injured people do not have to breathe toxic smoke. This can be done by placing a PPV fan in a distance of about two meters in front of a door of the burning building. On another, carefully chosen position in the building, e. g. a window, a door or at the roof an opening has to be created, where the smoke can leave the building. The same volumetric flow rate of gas that is blown into the building by the PPV fan has to leave the building at a chosen opening. Because the gas entering the building is air and the gas leaving the building is a mixture of smoke and air, the smoke concentration in the building can be reduced. To test the performance of such PPV fans, a test building with a door in the first floor and a window in the 3rd floor has been built. To measure the volumetric flow rate of the smoke and air mixture through the window in the 3rd floor that is leaving the building, a flow meter nozzle was designed. The design process was done using the commercial Navier Stokes solver Star CCM+, where three nozzle designs, such as a nozzle with constant velocity increase, a quarter circle nozzle and a non-curved nozzle were investigated for different volumetric flow rates. Also, a rounding at the window, where the nozzle is placed, was investigated to prevent flow detachment and shock losses at the inlet of the nozzle. The volumetric flow rate through the nozzle can be calculated, by measuring the pressure at the nozzle wall (before the contraction) and applying Bernoulli’s law, the continuity equation and assuming atmospheric pressure at the free jet flow at the end of the nozzle. The so calculated volumetric flow rate was compared with the actual flow rate, given by the numerical CFD simulations. With these values, the nozzle specific coefficient of discharge for several volumetric flow rates has been calculated and a function fitting was done to get obtain analytical relation between pressure and volumetric flow rate. The detailed design process of the three nozzles, the numerical results of the CFD studies and the determination of the nozzle specific coefficients of discharge are shown and discussed in detail in this work.


Author(s):  
Iltai Isaac Kim ◽  
Yang Li ◽  
Jaesung Park

Abstract We introduce an optical diagnostics to determine the morphological features of liquid droplet such as the thickness, the contact angle, and the dual profile using internal reflection interferometry. A coherent laser beam is internally reflected on the air/liquid interface of a sessile droplet placed on a prism-based substrate to produce an interference fringe on a screen far from the substrate. The reflected laser rays consist of the reflection from the center spherical droplet profile and the one from the lower hyperbola-like droplet profile. The reflected rays are interfered each other to form the interference fringes. Ray tracing simulation is conducted using a custom-designed computer program. The simulation shows that the interfering rays reflected near the inflection point produce the outer-most fringes of the concentric interference pattern on the screen, and the reflected rays from the apex of the spherical profile and the contact line of the lower hyperbola-like profile construct the fringes at the center of the interference patterns. The simulated results are compared with the experimental observation to show a good agreement in the number and the location of the fringes and the radius of the outer-most-fringe where the number of the fringes is dependent on the droplet thickness and the radius of the fringe depends on the contact angle of the droplet. This result provides a new measurement technique to determine the morphological features of very small microdroplet such as the thickness (< a few micron thickness), the contact angle (< a few degree), and the dual-surface profile.


Author(s):  
Chao Lu ◽  
Zhao Hu ◽  
Bei Xie ◽  
Ning Zhang

Abstract In this paper, computational heat transfer (CHT) equations were solved using the state-of-art quantum computing (QC) technology. The CHT equations can be discretized into a linear equation set, which can be possibly solved by a QC system. The linear system can be characterized by Ax = b. The A matrix in this linear system is a Hermitian matrix. The linear system is then solved by using the HHL algorithm, which is a quantum algorithm to solve a linear system. The quantum circuit requires an Ancilla qubit, clock qubits, qubits for b and a classical bit to record the result. The process of the HHL algorithm can be described as follows. Firstly, the qubit for b is initialized into the phase as desire. Secondly, the quantum phase estimation (QPE) is used to determine the eigenvalues of A and the eigenvalues are stored in clock qubits. Thirdly, a Rotation gate is used to rotate the inversion of eigenvalues and information is passed to the Ancilla bit to do Pauli Y-rotation operation. Fourthly, revert the whole processes to untangle qubits and measure all of the qubits to output the final results for x. From the existing literature, a few 2 × 2 matrices were successfully solved with QC technology, proving the possibility of QC on linear systems [1]. In this paper, a quantum circuit is designed to solve a CHT problem. A simple 2 by 2 linear equation is modeled for the CHT problem and is solved by using the quantum computing. The result is compared with the analytical result. This result could initiate future studies on determining the quantum phase parameters for more complicated QC linear systems for CHT applications.


Author(s):  
Zhifeng Zhang ◽  
Antoine Jean-Claude Jacques Pruvot ◽  
Pablo Cisternas ◽  
James McAndrew

Abstract Many technologies have been developed to improve the ability of fluids to transport particles. However, the evaluation of particle transport efficiency remains challenging, especially in complex flow such as three-phase flow. In the present research, theoretical and experimental work is conducted to develop a new perspective of evaluating particle transport technologies, particle transport coefficient (PTC) as the particle transport distance per unit volume of water consumption considering the transport efficiency and environmental cost. The mathematical form of the PTC for the steady-state transport case is derived, followed by three special transport cases: (a) PTC = 0 when particle settled or stuck, (b) PTC = infinity in the vertical direction, considering gravity or buoyant with carrier fluid stationary, while PTC = 0 in a horizontal pipe due to particle settlement; and (c) PTC = 2 for an infinitely small particle at the center of a fully-developed laminar flow in a pipe. Furthermore, the fluid property and surface property influence on PTC are experimentally demonstrated. We believe the proposed approach can promote the development of particle transport technologies.


Author(s):  
Fernando Karg Bulnes ◽  
Kyle R. Gluesenkamp ◽  
Joseph Rendall

Abstract Residential water heaters contain water stratified by temperature-driven density differences. This implies that a water tank can reach a state in which the top and bottom sections have different temperatures, unless mixing happens. A high degree of thermal stratification can improve the efficiency of some water heaters, by saving the amount of energy required for the heat-up process. Studies of stratification became popular in the 1970s and it remains an active research topic today. The research has led to the development of different models and techniques to better predict and define a stratified tanks behavior. By comparing these models and techniques used previously to describe thermal stratification, the phenomenon could be better understood, exploited, and used to increase efficiency and thermal energy capacity in modern water tanks. From the existing models, we found the one-dimensional standard plug-flow and a multi node model to be appropriate for analyzing the processes of the heat up and cool-down in a water tank. These two models are based on energy balances. This work involved comparing the accuracy and computational effort needed to implement these models. To assess accuracy, we compared both types of existing models to experimental data (also collected in this work) which included a heat up process using an external heat pump. This external process included a layering process that has an eddy diffusivity at five times the rate of thermal diffusion. For this project, we implemented the models in MATLAB, the multi-paradigm numerical computing environment. We quantified model accuracy using the root mean squared error between modeled data and experimental data for six measured tank temperatures. Comparing the accuracy and the computational time taken to run the simulation provides a method to contrast the performance of each model and a way to rate it. The multi node model was run using from 6 to 96 spatial nodes; the plug flow model was run using 1 to 0.001 °C temperature bin sizes. Additionally, timesteps were varied from 4 to 236 s. The results quantify the tradeoff between accuracy and computational time, providing guidance for simulations to intelligently select the best model type and simulation parameters. This research can be used to validate the pre-existing models and possibly improve the modern water tank.


Author(s):  
Olav Mehlum ◽  
Øyvind Hundseid ◽  
Lars E. Bakken

Abstract Subsea wet gas compressors have been successfully in operation for approximately 5 years. Their use has proven to increase the recovery by approximately 10% and achieve a reliability up to 98%. Further developed and operation of subsea wet gas compression require detailed knowledge of compressor operability and how shift in operational conditions affect the compressor system. The compressors ability to handle wet gas is documented in detail for a gas volume fraction limited down to 0.90. The 4–5 last year of operation proves the wet gas concepts capability. As years pass by, well pressure and production rate declines which causes the compressor operation point to shift towards the high head and low flow (surge) area of the characteristics. In addition, compressor inlet transients increase due to pipe surge (slugs), requiring a robust control system to prevent instabilities, e.g. compressor surge. It is therefore vital to understand how the compressor inlet flow device behaves at different wet operation conditions. The article documents how a standard dry gas venturi tube behave at different wet gas operation conditions. The venturi is designed according to ISO5167-4 for dry gas conditions and is tested at the low-pressure air water compressor test rig at NTNU. The primary objective of the work has been to visualize the wet flow regime through the transparent venturi tube and to document the wet gas flow rate measurements by means of single-phase meters. The venturi tube is tested in a GMF range from 1 to 0.83 at an air volume flow rate of 1.3m3/s.


Author(s):  
Kai Zhang ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and mid-fidelity aerodynamic modelling of floating offshore wind turbine rotors. The low-fidelity approach employs the conventional Blade Element Momentum theory implemented in AeroDyn of OpenFAST. This model ignores the aerodynamic interactions between different blade elements, and the forces on the blade are determined from the balance between momentum theory and blade element theory. With this method, it is possible to calculate the aerodynamic performance for different settings with low computational cost. For the mid-fidelity approach, the Actuator Line Modeling method implemented in turbinesFoam (an OpenFOAM library) is used. This method is built upon a combination of the blade element theory for modeling the blades, and a Navier-Stokes description of the wake flow field. Thus, it can capture the wake dynamics without resolving the detailed flows near the blades. The aerodynamic performance of the DTU 10 MW reference wind turbine rotor is studied using the two methods. The effects of wind speed, tip speed ratio, and blade pitch angles are assessed. Good agreement is observed between the two methods at low tip speed ratios, while the Actuator Line Modeling method predicts slightly higher power coefficients at high tip speed ratios. In addition, the ability of the Actuator Line Modeling Method to capture the wake dynamics of the rotor in an unsteady inflow is demonstrated. In the future, the multi-fidelity aerodynamic modules developed in this paper will be integrated with the hydro-kinematics and hydro-dynamics of a floating platform and a mooring system, to achieve a fully coupled framework for the analysis and design optimization of floating offshore wind turbines.


Sign in / Sign up

Export Citation Format

Share Document