blade element theory
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


2021 ◽  
Vol 16 (6) ◽  
pp. 064001
Author(s):  
Jong-Seob Han ◽  
Christian Breitsamter

Abstract In order to properly understand aerodynamic characteristics in a flapping wing in forward flight, additional aerodynamic parameters apart from those in hover—an inclined stroke plane, a shifted-back stroke plane, and an advance ratio—must be comprehended in advance. This paper deals with the aerodynamic characteristics of a flapping wing in a shifted-back vertical stroke plane in freestream. A scaled-up robotic arm in a water towing tank was used to collect time-varying forces of a model flapping wing, and a semi-empirical quasi-steady aerodynamic model, which can decompose the forces into steady, quasi-steady, and unsteady components, was used to estimate the forces of the model flapping wing. It was found that the shifted-back stroke plane left a part of freestream as a non-perpendicular component, giving rise to a time-course change in the aerodynamic forces during the stroke. This also brought out two quasi-steady components (rotational and added-mass forces) apart from the steady one, even the wing moved with a constant stroke velocity. The aerodynamic model underestimated the actual forces of the model flapping wing even it can cover the increasingly distributed angle of attack of the vertical stroke plane with a blade element theory. The locations of the centers of pressure suggested a greater pressure gradient and an elongated leading-edge vortex along a wingspan than that of the estimation, which may explain the higher actual force in forward flight.


2021 ◽  
Author(s):  
Jing Xu ◽  
Yujie Zhou ◽  
Jiawei Yu ◽  
Weihua Deng ◽  
Dakui Feng

Abstract The self-propulsion simulations of JBC (Japan Bulk Carrier) were performed in model and full scale with two approach: one is the body force method using steady blade element theory (lift lines theory) and infinite blade propeller, the other is 3-D discretized propeller method. All simulations were investigated using an in-house CFD code which is based on the finite difference method to discretize the governing equations. A dynamic overset technique was used and any revolutions of the propeller can be achieved in the simulation. In order to obtain the self-propulsion point, a PI speed controller was utilized to adjust the rate of revolutions of the propeller. To obtain self-propulsion factors, resistance and open water tests are also computed. Thrust identity method was used to obtain wake fraction. The full scale total resistance coefficient was obtained according two extrapolation methods: the first is the ITTC 1978 recommended procedure, while the second is the extrapolation method based on Grigson friction line. Wake fraction was revised following ITTC recommended procedures in full scale. All the results of the simulation have a reasonable agreement with experimental results. The computational results presented in this paper also provide evidence to the full scale self-propulsion prediction ability of the in-house code.


2021 ◽  
Author(s):  
Michael G. Leahy

Multidisciplinary design optimization (MDO) was performed on a helicopter rotor blade. The blade was modeled as a rigid flapping blade for dynamics; Blade Element Theory (BET) was the analysis approach to model the aerodynamic loading, and a simple linearly elastic hollowed rectangular section was the main structural component. MATLAB was used to solve the flapping differential equations and its Sequential Quadratic Programming (SQP) and Genetic Algorithm (GA) were used for the optimization. A Particle Swarm Optimization (PSO) routine was also tested. The optimization process consisted of three cases. The first case was a simple cantilever beam under centrifugal and an assumed bending loads. The optimization was performed using the SQP, GA, and PSO algorithms. The SQP resulted in the superior design with 75.45 compared to the GA's 87.1 and the PSO's 79.2, but a local minimum was present. The second case was an expansion of the first case by turning it into multidisciplinary problem. Aerodynamics was included in the design variables and objective function. Only the SQP algorithm was used and there was a reduction in hub vertical shear by 33.6%. The blade mass increased by 36.84%. The last case was an improvement to the second by creating a multiobjective problem by including the hub radial shear and the results were improved significantly by reducing the hub vertical shear by 34.06% and radial shear by 17.87% with a reduction of blade mass by 23.86%.


2021 ◽  
Author(s):  
Michael G. Leahy

Multidisciplinary design optimization (MDO) was performed on a helicopter rotor blade. The blade was modeled as a rigid flapping blade for dynamics; Blade Element Theory (BET) was the analysis approach to model the aerodynamic loading, and a simple linearly elastic hollowed rectangular section was the main structural component. MATLAB was used to solve the flapping differential equations and its Sequential Quadratic Programming (SQP) and Genetic Algorithm (GA) were used for the optimization. A Particle Swarm Optimization (PSO) routine was also tested. The optimization process consisted of three cases. The first case was a simple cantilever beam under centrifugal and an assumed bending loads. The optimization was performed using the SQP, GA, and PSO algorithms. The SQP resulted in the superior design with 75.45 compared to the GA's 87.1 and the PSO's 79.2, but a local minimum was present. The second case was an expansion of the first case by turning it into multidisciplinary problem. Aerodynamics was included in the design variables and objective function. Only the SQP algorithm was used and there was a reduction in hub vertical shear by 33.6%. The blade mass increased by 36.84%. The last case was an improvement to the second by creating a multiobjective problem by including the hub radial shear and the results were improved significantly by reducing the hub vertical shear by 34.06% and radial shear by 17.87% with a reduction of blade mass by 23.86%.


2021 ◽  
Vol 20 (1) ◽  
pp. 14-28
Author(s):  
O. E. Lukyanov ◽  
D. V. Zolotov

In this paper, we presented the developed concept for end-to-end training of designers and operators of UAVs on the basis of the use of specialized aircraft-type trainers. The educational possibilities of the concept in terms of various training programs are discussed. A methodology for the selection of the main parameters of UAV taking into account the mutual effect of aerodynamics and weight was developed. It provided a wide range of specific requirements for UAVs for acquiring initial control skills in manual and automatic modes. The developed methodology is based on the takeoff-weight buildup equation modified with regard to the specific requirements for small-sized vehicles. This methodology also includes the process of choosing the most advantageous combination of geometric and kinematic parameters of an aircraft propeller using the isolated blade element theory. The methodology is implemented in PascalABC.NET language. A demonstrative example of selecting the main parameters of a training UAV for specific requirements is presented. The obtained basic technical characteristics of the UAV are given. A three-dimensional geometric model of the UAV was developed on the basis of the calculated data, and a prototype was manufactured. The flight parameters recorded through a series of test flights of the prototype are presented. The ways of using the described methodology for the development of training-and-research UAVs are discussed.


2021 ◽  
pp. 014459872098662
Author(s):  
Salma Hazim ◽  
Abdelouahab Salih ◽  
Mourad Taha Janan ◽  
Ahmed El Ouatouati ◽  
Abdellatif Ghennioui

Generating electricity through renewable energies is growing increasingly to reduce the huge demand on electricity and the impact of fossil energies on the environment, the most common sources forms used are: the wind, the sun, the photovoltaic and the thermal, without forgetting hydropower by the bays of dams. Fortunately, 70% of our planet is covered by the seas and oceans, this area constitutes a huge potential for electricity production to be exploited. The scientific advances of recent years allow a better exploitation of these resources especially the marine current due to its reliability and predictability. The marine current energy is extracted using a hydrokinetic turbine (HKT) which transform the kinetic energy of water into an electrical energy. The exploitation of this resource needs in the first step the assessment of marine currents in the study area for implementing the HKT, and the second step is designing an adequate technology. The main goal of this study is the assessment of the marine current resource on the Moroccan Mediterranean coast to evaluate the suitable area to implement the HKT, and to determine the marine current speed intensities at different depths. As well as, to estimate an average potential existing in the site. Moreover, we will conduct a study based on the results of the assessment that was made to design a horizontal axis marine current turbine (HAMCT). Two hydrofoil profile were considered to design a HAMCT using the Blade Element Theory (BEM) and calculating their performances adapted to the site conditions Naca4415 and s8052. In addition, a comparison was made between this two HAMCT hydrofoil profile for deciding the best one for implementing in the studied area.


2021 ◽  
Vol 14 (28) ◽  
pp. 31-41
Author(s):  
Daniel E. Riveros Nieto

The process of optimized design, evaluation and manufacturing of high energy efficiency propellers for competition boats at scale is addressed in this research. This project uses the stages of hydrodynamic design, numerical testing and manufacturing of four prototypes as example. During the hydrodynamic design, three design methodologies were compared, namely: Blade Element Theory, lifting line theory and design based on DTMB propeller series. The objective function of the optimized design is based on obtaining the chord and pitch distribution that generates the greatest thrust, speed and efficiency. Similarly, the performance of each prototype was evaluated by CFD in a virtual channel registering thrust, torque and speed. Finally, the additive manufacturing process applied is presented. Prototyped propellers present efficiencies and maximum speeds approximately 15% higher than recommended commercial propellers for this type of boats. This study was developed by the Hydrometra group in the framework of the international competition Hydrocontest 2017.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chiranjivi Dahal ◽  
Hari Bahadur Dura ◽  
Laxman Poudel

The commercially available unmanned aerial vehicles are not good enough for search and rescue flight at high altitudes. This is because as the altitude increases, the density of air decreases which affects the thrust generation of the UAV. The objective of this research work is to design thrust optimized blade for an altitude range of 3,000–5,000 m with a density of air 0.7364 kg/m3, respectively, and perform thrust analysis. The property of aluminum alloy 1,060 being lightweight is chosen for designing and testing of blade. The blade element theory-based design and analysis code was developed, and user-friendly aerodynamic inputs were used to obtain the desired outputs. The geometry designed for an altitude range of 3,000-5,000 m faced the total stress of 6.0 MPa which was at 70% of the blade span. This stress is within the limit of yield strength of the aluminum alloy, 28 MPa. The modal analysis shows the first natural frequency occurs at around 12,000 RPM which is safe for operating the blade at 0-5,000 RPM. Experimental analysis of the blade gave a thrust of 0.92 N at 2,697 RPM at 1,400 m. The analytical solution for thrust with the same conditions was 1.7 N with 85.6% efficiency. The validation of experimental results has been done by the CFD analysis. The CFD analysis was performed in ANSYS CFX which gave a thrust value of 2.27 N for the same boundary conditions. Thus, the blade designed for high altitude SAR UAV is structurally safe to operate in 0-5,000 RPM range, and its use in search missions could save many lives in the Himalayas.


Author(s):  
Yuchen Leng ◽  
Thierry Jardin ◽  
Jean-Marc Moschetta ◽  
Murat Bronz

The paper presents an analytical model for estimation of proprotor aerodynamic loads at elevated incidence angles. Previous theories have concentrated on either small incidence angle for aircraft stability analysis or edge-wise flow for helicopter forward flight. This development attempted an engineering method that covers the full incidence angle range from 0 to π/2. Blade element theory was applied to known proprotor geometry, and off-axis loads including normal force and in-plane moment were obtained in closed form based on thrust and torque in axial condition. The model was found to be sufficiently accurate over a broader flight conditions compared to classical models, and computationally more efficient than numerical methods. Hence it could be easily used as a preliminary design and analysis tool for future convertible aircraft proprotors. The paper further discusses a dedicated wind tunnel campaign on proprotor off-axis load measurement. Experimental data from the test campaign was considered in model validation. The results suggested that the model was capable to accurately estimate proprotor performance in nominal flight regimes.


Sign in / Sign up

Export Citation Format

Share Document