GLOBAL EXISTENCE AND LONG-TIME BEHAVIOR FOR A PARTIALLY DISSIPATIVE SYSTEM MODELLING A POLYMERIZATION–CRYSTALLIZATION REACTION

1998 ◽  
Vol 08 (02) ◽  
pp. 219-249 ◽  
Author(s):  
SERGE NJAMKEPO

We consider a partially dissipative system in a bounded interval of ℝ and we prove the existence of a local exponential attractor. The key tool is the adaptation of a method due to Babin and Nicolaenko, for a dissipative system in an unbounded domain.

2014 ◽  
Vol 24 (14) ◽  
pp. 2743-2783 ◽  
Author(s):  
Maurizio Grasselli ◽  
Hao Wu

We consider a modification of the so-called phase-field crystal (PFC) equation introduced by K. R. Elder et al. This variant has recently been proposed by P. Stefanovic et al. to distinguish between elastic relaxation and diffusion time scales. It consists of adding an inertial term (i.e. a second-order time derivative) into the PFC equation. The mathematical analysis of the resulting equation is more challenging with respect to the PFC equation, even at the well-posedness level. Moreover, its solutions do not regularize in finite time as in the case of PFC equation. Here we analyze the modified PFC (MPFC) equation endowed with periodic boundary conditions. We first prove the global existence and uniqueness of a solution with initial data in a bounded energy space. This solution satisfies some uniform dissipative estimates which allow us to study the long-time behavior of the corresponding dynamical system. In particular, we establish the existence of the global attractor as well as an exponential attractor. Then we demonstrate that any trajectory originating from the bounded energy phase space converges to a single equilibrium. This is done by means of a suitable version of the Łojasiewicz–Simon inequality. An estimate on the convergence rate is also given.


Author(s):  
Jiang Bo Zhou ◽  
Jun De Chen ◽  
Wen Bing Zhang

We first establish the local well-posedness for a weakly dissipative shallow water equation which includes both the weakly dissipative Camassa-Holm equation and the weakly dissipative Degasperis-Procesi equation as its special cases. Then two blow-up results are derived for certain initial profiles. Finally, We study the long time behavior of the solutions.


Sign in / Sign up

Export Citation Format

Share Document