An infinite family of braid group representations in automorphism groups of free groups

2020 ◽  
Vol 29 (10) ◽  
pp. 2042007
Author(s):  
Wonjun Chang ◽  
Byung Chun Kim ◽  
Yongjin Song

The [Formula: see text]-fold ([Formula: see text]) branched coverings on a disk give an infinite family of nongeometric embeddings of braid groups into mapping class groups. We, in this paper, give new explicit expressions of these braid group representations into automorphism groups of free groups in terms of the actions on the generators of free groups. We also give a systematic way of constructing and expressing these braid group representations in terms of a new gadget, called covering groupoid. We prove that each generator [Formula: see text] of braid group inside mapping class group induced by [Formula: see text]-fold covering is the product of [Formula: see text] Dehn twists on the surface.

2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter introduces the reader to Artin's classical braid groups Bₙ. The group Bₙ is isomorphic to the mapping class group of a disk with n marked points. Since disks are planar, the braid groups lend themselves to special pictorial representations. This gives the theory of braid groups its own special flavor within the theory of mapping class groups. The chapter begins with a discussion of three equivalent ways of thinking about the braid group, focusing on Artin's classical definition, fundamental groups of configuration spaces, and the mapping class group of a punctured disk. It then presents some classical facts about the algebraic structure of the braid group, after which a new proof of the Birman–Hilden theorem is given to relate the braid groups to the mapping class groups of closed surfaces.


Author(s):  
ANDREA BIANCHI

Abstract We consider the Birman–Hilden inclusion $\phi\colon\Br_{2g+1}\to\Gamma_{g,1}$ of the braid group into the mapping class group of an orientable surface with boundary, and prove that $\phi$ is stably trivial in homology with twisted coefficients in the symplectic representation $H_1(\Sigma_{g,1})$ of the mapping class group; this generalises a result of Song and Tillmann regarding homology with constant coefficients. Furthermore we show that the stable homology of the braid group with coefficients in $\phi^*(H_1(\Sigma_{g,1}))$ has only 4-torsion.


2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


2021 ◽  
Vol 157 (8) ◽  
pp. 1807-1852
Author(s):  
Matt Clay ◽  
Johanna Mangahas ◽  
Dan Margalit

We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.


2005 ◽  
Vol 14 (08) ◽  
pp. 1087-1098 ◽  
Author(s):  
VALERIJ G. BARDAKOV

We construct a linear representation of the group IA (Fn) of IA-automorphisms of a free group Fn, an extension of the Gassner representation of the pure braid group Pn. Although the problem of faithfulness of the Gassner representation is still open for n > 3, we prove that the restriction of our representation to the group of basis conjugating automorphisms Cbn contains a non-trivial kernel even if n = 2. We construct also an extension of the Burau representation to the group of conjugating automorphisms Cn. This representation is not faithful for n ≥ 2.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650022
Author(s):  
Byung Hee An

In this paper, we compute the automorphism groups [Formula: see text] and [Formula: see text] of braid groups [Formula: see text] and [Formula: see text] on every orientable surface [Formula: see text], which are isomorphic to group extensions of the extended mapping class group [Formula: see text] by the transvection subgroup except for a few cases. We also prove that [Formula: see text] is always a characteristic subgroup of [Formula: see text], unless [Formula: see text] is a twice-punctured sphere and [Formula: see text].


2018 ◽  
Vol 2020 (24) ◽  
pp. 9974-9987
Author(s):  
Hyungryul Baik ◽  
Hyunshik Shin

Abstract In this paper, we show that the minimal asymptotic translation length of the Torelli group ${\mathcal{I}}_g$ of the surface $S_g$ of genus $g$ on the curve graph asymptotically behaves like $1/g$, contrary to the mapping class group ${\textrm{Mod}}(S_g)$, which behaves like $1/g^2$. We also show that the minimal asymptotic translation length of the pure braid group ${\textrm{PB}}_n$ on the curve graph asymptotically behaves like $1/n$, contrary to the braid group ${\textrm{B}}_n$, which behaves like $1/n^2$.


Sign in / Sign up

Export Citation Format

Share Document