OPTIMAL PERIODIC REPLACEMENT POLICY WITH CHECKING TIME

Author(s):  
SHEY-HUEI SHEU ◽  
YAN-CHUN CHEN ◽  
LI-HSIU TENG

This investigation considers a generalized inspection policy for a deteriorating production system with general random minimal repair costs. The inspection times for the inspection strategy are assumed to be non-negligible. Additionally, uncertainty probabilities associated with inspections are introduced. Using a dynamic programming formulation, the optimal inspection time for maximizing profit per unit time for a given overhaul/replacement time is determined. Next, the procedure is extended to determine the optimal periodic overhaul/replacement time, as well as the optimal number of inspections and their schedule.

2012 ◽  
Vol 29 (03) ◽  
pp. 1240020
Author(s):  
FU-MIN CHANG ◽  
YU-HUNG CHIEN

This paper presents the effects of a free minimal repair warranty (FMRW) on the periodic replacement policy under discrete operating circumstance. For the discrete-time periodic replacement policy, a product is preventively replaced at pre-specified operation cycles N, 2N, 3N, … (N = 1, 2, …). When the product fails, a minimal repair is performed at the time of failure and the failure rate is not disturbed by each repair. From the customer's perspective, the cost models are developed for both a warranted and a nonwarranted product, and the corresponding optimal periodic replacement policies are derived such that the long-run expected cost rates are minimized. Under the assumption of the discrete time increasing failure rate (IFR), the existence and uniqueness of the optimal N* are shown, and the impacts of a FMRW on the optimal replacement policies are investigated analytically. We found that the optimal N* for a warranted product should be adjusted toward the end of the warranty period.


Author(s):  
Murat Ozkut

This paper is concerned with two optimization problems for a k-out-of- n system consisting of dependent components such as finding the number of elements in the system that minimize the system’s mean cost rate and the system’s optimal replacement time. In previous studies, either system consisting of independent components or parallel systems, a particular case of the present study, was examined. In particular, we numerically examine how the components’ dependence affects the optimal number of units and replacement time for the system, minimizing mean cost rates. We consider when the components are exchangeable and dependent, that is, the system consists of dependent components. For three vastly used Clayton, Gumbel, and FGM copula functions, comparative numerical results are presented.


Sign in / Sign up

Export Citation Format

Share Document