NEARLY EXACT OPTION PRICE SIMULATION USING CHARACTERISTIC FUNCTIONS

2012 ◽  
Vol 15 (07) ◽  
pp. 1250047 ◽  
Author(s):  
CAROLE BERNARD ◽  
ZHENYU CUI ◽  
DON MCLEISH

This paper presents a new approach to perform a nearly unbiased simulation using inversion of the characteristic function. As an application we are able to give unbiased estimates of the price of forward starting options in the Heston model and of continuously monitored Parisian options in the Black-Scholes framework. This method of simulation can be applied to problems for which the characteristic functions are easily evaluated but the corresponding probability density functions are complicated.

Author(s):  
R. J. Eggert ◽  
R. W. Mayne

Abstract Probabilistic optimization using the moment matching method and the simulation optimization method are discussed and compared to conventional deterministic optimization. A new approach based on successively approximating probability density functions, using recursive quadratic programming for the optimization process, is described. This approach incorporates the speed and robustness of analytical probability density functions and improves accuracy by considering simulation results. Theoretical considerations and an example problem illustrate the features of the approach. The paper closes with a discussion of an objective function formulation which includes the expected cost of design constraint failure.


1984 ◽  
Vol 106 (1) ◽  
pp. 5-10 ◽  
Author(s):  
J. N. Siddall

The anomalous position of probability and statistics in both mathematics and engineering is discussed, showing that there is little consensus on concepts and methods. For application in engineering design, probability is defined as strictly subjective in nature. It is argued that the use of classical methods of statistics to generate probability density functions by estimating parameters for assumed theoretical distributions should be used with caution, and that the use of confidence limits is not really meaningful in a design context. Preferred methods are described, and a new evolutionary technique for developing probability distributions of new random variables is proposed. Although Bayesian methods are commonly considered to be subjective, it is argued that, in the engineering sense, they are really not. A general formulation of the probabilistic optimization problem is described, including the role of subjective probability density functions.


1984 ◽  
Vol 1 (19) ◽  
pp. 8
Author(s):  
Yoshito Tsuchiya ◽  
Yoshiaki Kawata

The objective of this paper is to propose a new approach based on the direction of the typhoon track for determining the probability of occurrence of extremal tides due to storm surges, as well as their return period. The study includes the effects of periods in tidal data and of tidal variation stemming from extensive reclamation along coasts on the fitness of the extremal data to probability density functions. The method is justified by application to an analysis of the probability of occurrence of storm surges in Osaka bay.


1993 ◽  
Vol 115 (3) ◽  
pp. 385-391 ◽  
Author(s):  
R. J. Eggert ◽  
R. W. Mayne

Probabilistic optimization using the moment matching method and the simulation optimization method are discussed and compared to conventional deterministic optimization. A new approach based on successively approximating probability density functions, using recursive quadratic programming for the optimization process, is described. This approach incorporates the speed and robustness of analytical probability density functions and improves accuracy by considering simulation results. Theoretical considerations and an example problem illustrate the features of the approach. The paper closes with a discussion of an objective function formulation which includes the expected cost of design constraint failure.


Sign in / Sign up

Export Citation Format

Share Document