scholarly journals Fractional Matching Preclusion for Restricted Hypercube-Like Graphs

2019 ◽  
Vol 19 (03) ◽  
pp. 1940010
Author(s):  
HUAZHONG LÜ ◽  
TINGZENG WU

The restricted hypercube-like graphs, variants of the hypercube, were proposed as desired interconnection networks of parallel systems. The matching preclusion number of a graph is the minimum number of edges whose deletion results in the graph with neither perfect matchings nor almost perfect matchings. The fractional perfect matching preclusion and fractional strong perfect matching preclusion are generalizations of the matching preclusion. In this paper, we obtain fractional matching preclusion number and fractional strong matching preclusion number of restricted hypercube-like graphs, which extend some known results.

2018 ◽  
Vol 28 (04) ◽  
pp. 1850017 ◽  
Author(s):  
Tianlong Ma ◽  
Yaping Mao ◽  
Eddie Cheng ◽  
Jinling Wang

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu introduced the concept of fractional matching preclusion number in 2017. The Fractional Matching Preclusion Number (FMP number) of G is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The Fractional Strong Matching Preclusion Number (FSMP number) of G is the minimum number of vertices and/or edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the FMP number and the FSMP number for (n, k)-star graphs. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950048
Author(s):  
Xia Wang ◽  
Tianlong Ma ◽  
Jun Yin ◽  
Chengfu Ye

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of [Formula: see text], denoted by [Formula: see text], is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we study the fractional matching preclusion number and the fractional strong matching preclusion number for the radix triangular mesh [Formula: see text], and all the optimal fractional matching preclusion sets and fractional strong matching preclusion sets of these graphs are categorized.


2012 ◽  
Vol 22 (02) ◽  
pp. 1250005 ◽  
Author(s):  
EDDIE CHENG ◽  
SACHIN PADMANABHAN

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. In this paper, we find the matching preclusion number and the conditional matching preclusion number with the classification of the optimal sets for the class of crossed cubes, an important variant of the class of hypercubes. Indeed, we will establish more general results on the matching preclusion and the conditional matching preclusion problems for a larger class of interconnection networks.


2010 ◽  
Vol 11 (01n02) ◽  
pp. 35-60 ◽  
Author(s):  
EDDIE CHENG ◽  
RANDY JIA ◽  
DAVID LU

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those incident to a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those incident to a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. In this paper, we find this number and classify all optimal sets for the augmented cubes, a class of networks designed as an improvement of the hypercubes.


2019 ◽  
Vol 19 (03) ◽  
pp. 1940006 ◽  
Author(s):  
YAPING MAO ◽  
EDDIE CHENG

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. There are other related parameters and generalization including the strong matching preclusion number, the conditional matching preclusion number, the fractional matching preclusion number, and so on. In this survey, we give an introduction on the general topic of matching preclusion.


2020 ◽  
Vol 20 (04) ◽  
pp. 2150003
Author(s):  
JINYU ZOU ◽  
CHENGFU YE ◽  
HAIZHEN REN

Let F be an edge set and F′ a subset of edges and/or vertices of a graph G. Then F is a fractional matching preclusion(FMP) set (F′ is a fractional strong matching preclusion (FSMP) set) if G − F (G − F′) does not contain fractional perfect matching. The FMP(FSMP) number of G is the minimum size of FMP(FSMP) sets of G. The concept of matching preclusion was introduced by Brigham et al., as a measure of robustness in the event of edge failure in interconnection networks. An interconnection network of a larger MP number may be considered as more robust in the event of link failures. The problem of fractional matching preclusion is a generalization of matching preclusion. In this paper, we obtain the FMP and FSMP number for the folded Petersen cube networks. All the optimal fractional strong matching preclusion sets of these graphs are categorized.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012033
Author(s):  
Bo Zhu ◽  
Shumin Zhang ◽  
Chenfu Ye

Abstract The fractional strong matching preclusion number of a graph is the minimum number of edges and vertices whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the fractional strong matching preclusion number for the Cartesian product of a graph and a cycle. As an application, the fractional strong matching preclusion number for torus networks is also obtained.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650004 ◽  
Author(s):  
EDDIE CHENG ◽  
OMER SIDDIQUI

The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph with neither perfect matchings nor almost-perfect matchings. This is an extension of the matching preclusion problem that was introduced by Park and Ihm. The class of arrangement graphs was introduced as a common generalization of the star graphs and alternating group graphs, and to provide an even richer class of interconnection networks. In this paper, the goal is to find the strong matching preclusion number of arrangement graphs and to categorize all optimal strong matching preclusion sets of these graphs.


2013 ◽  
Vol 23 (01) ◽  
pp. 1350004 ◽  
Author(s):  
EDDIE CHENG ◽  
LÁSZLÓ LIPTÁK

The matching preclusion number of an even graph G, denoted by mp (G), is the minimum number of edges whose deletion leaves the resulting graph without perfect matchings. The conditional matching preclusion number of an even graph G, denoted by mp 1(G), is the minimum number of edges whose deletion leaves the resulting graph with neither perfect matchings nor isolated vertices. The class of (n,k)-star graphs is a popular class of interconnection networks for which the matching preclusion number and the classification of the corresponding optimal solutions were known. However, the conditional version of this problem was open. In this paper, we determine the conditional matching preclusion for (n,k)-star graphs as well as classify the corresponding optimal solutions via several new results. In addition, an alternate proof of the results on the matching preclusion problem will also be given.


2019 ◽  
Vol 19 (03) ◽  
pp. 1940009
Author(s):  
XIAQI WEI ◽  
SHURONG ZHANG ◽  
WEIHUA YANG

The matching preclusion number of a graph is the minimum number of edges whose deletion leaves the resulting graph that has neither perfect matchings nor almost perfect matchings. This concept was introduced as a measure of robustness in the event of edge failure in interconnection networks. The pyramid network is one of the important networks applied in parallel and distributed computer systems. Chen et al. in 2004 proposed a new hierarchy structure, called the enhanced pyramid network, by replacing each mesh in a pyramid network with a torus. An enhanced pyramid network of n layers is denoted by EPM(n). In this paper, we prove that the matching preclusion number of EPM(n) is 9 where n ≥ 4.


Sign in / Sign up

Export Citation Format

Share Document