scholarly journals Fractional strong matching preclusion of some Cartesian product graphs

2021 ◽  
Vol 2132 (1) ◽  
pp. 012033
Author(s):  
Bo Zhu ◽  
Shumin Zhang ◽  
Chenfu Ye

Abstract The fractional strong matching preclusion number of a graph is the minimum number of edges and vertices whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the fractional strong matching preclusion number for the Cartesian product of a graph and a cycle. As an application, the fractional strong matching preclusion number for torus networks is also obtained.

2015 ◽  
Vol 9 (1) ◽  
pp. 13-28 ◽  
Author(s):  
Liancui Zuo ◽  
Shengjie He ◽  
Bing Xue

A linear k-forest of an undirected graph G is a subgraph of G whose components are paths with lengths at most k. The linear k-arboricity of G, denoted by lak(G), is the minimum number of linear k-forests needed to partition the edge set E(G) of G. In this paper, the exact values of the linear (n-1)-arboricity of Hamming graph, and Cartesian product graphs Cm nt and Kn_Kn,n are obtained.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


2017 ◽  
Vol 75 (2) ◽  
pp. 255-267 ◽  
Author(s):  
S. Bermudo ◽  
J. L. Sanchéz ◽  
J. M. Sigarreta

Sign in / Sign up

Export Citation Format

Share Document