Note on Reliability Analysis of Cartesian Product of Networks for Components

2021 ◽  
pp. 2142010
Author(s):  
Litao Guo ◽  
Jun Ge

Connectivity is a critical parameter which can measure the reliability of networks. Let [Formula: see text] be a vertex set of [Formula: see text]. If [Formula: see text] has at least [Formula: see text] components, then [Formula: see text] is a [Formula: see text]-component cut of [Formula: see text]. The [Formula: see text]-component connectivity [Formula: see text] of [Formula: see text] is the vertex number of a smallest [Formula: see text]-component cut. Cartesian product of graphs is a useful method to construct a large network. We will use Cauchy–Schwarz inequality to determine the component connectivity of Cartesian product of some graphs.

Algorithms ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 153 ◽  
Author(s):  
Stephen Finbow ◽  
Christopher M. van Bommel

For a graph G = ( V , E ) , the γ -graph of G, denoted G ( γ ) = ( V ( γ ) , E ( γ ) ) , is the graph whose vertex set is the collection of minimum dominating sets, or γ -sets of G, and two γ -sets are adjacent in G ( γ ) if they differ by a single vertex and the two different vertices are adjacent in G. In this paper, we consider γ -graphs of trees. We develop an algorithm for determining the γ -graph of a tree, characterize which trees are γ -graphs of trees, and further comment on the structure of γ -graphs of trees and its connections with Cartesian product graphs, the set of graphs which can be obtained from the Cartesian product of graphs of order at least two.


2016 ◽  
Vol 11 (9) ◽  
pp. 5654-5660
Author(s):  
Essam EI Seidy ◽  
Salah ElDin Hussein ◽  
Atef Abo Elkher

In this paper, we consider a finite undirected and connected simple graph G(E, V) with vertex set V(G) and edge set E(G).We introduced a new computes the spectra of some operations on simple graphs [union of disjoint graphs, join of graphs, cartesian product of graphs, strong cartesian product of graphs, direct product of graphs].


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2014 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
M. R. CHITHRA ◽  
A. VIJAYAKUMAR

The diameter of a graph can be affected by the addition or deletion of edges. In this paper, we examine the Cartesian product of graphs whose diameter increases (decreases) by the deletion (addition) of a single edge. The problems of minimality and maximality of the Cartesian product of graphs with respect to its diameter are also solved. These problems are motivated by the fact that most of the interconnection networks are graph products and a good network must be hard to disrupt and the transmissions must remain connected even if some vertices or edges fail.


2019 ◽  
Vol 12 (2) ◽  
pp. 499-505
Author(s):  
Caen Grace Sarona Nianga ◽  
Sergio R. Canoy Jr.

Let G = (V (G),E(G)) be any simple undirected graph. The open hop neighborhood of v ϵ V(G) is the set 𝑁_𝐺^2(𝑣) = {u ϵ V(G):  𝑑_𝐺 (u,v) = 2}. Then G induces a topology τ_G on V (G) with base consisting of sets of the form F_G^2[A] = V(G) \ N_G^2 [A] where N_G^2 [A] = A ∪ {v ϵ V(G):  𝑁_𝐺^2(𝑣) ∩ A ≠ ∅ } and A ranges over all subsets of V (G). In this paper, we describe the topologies induced by the complement of a graph, the join, the corona, the composition and the Cartesian product of graphs.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


Sign in / Sign up

Export Citation Format

Share Document