STOCHASTIC INTEGRATION FOR FRACTIONAL BROWNIAN MOTION IN A HILBERT SPACE

2006 ◽  
Vol 06 (01) ◽  
pp. 53-75 ◽  
Author(s):  
T. E. DUNCAN ◽  
J. JAKUBOWSKI ◽  
B. PASIK-DUNCAN

A Hilbert space-valued stochastic integration is defined for an integrator that is a cylindrical fractional Brownian motion in a Hilbert space and an operator-valued integrand. Since the integrator is not a semimartingale for the fractional Brownian motions that are considered, a different definition of integration is required. Both deterministic and stochastic operator-valued integrands are used. The approach uses some ideas from Malliavin calculus. In addition to the definition of stochastic integration, an Itô formula is given for smooth functions of some processes that are obtained by the stochastic integration.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Elhoussain Arhrrabi ◽  
M’hamed Elomari ◽  
Said Melliani ◽  
Lalla Saadia Chadli

The existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential stability of solutions.


2020 ◽  
pp. 1-32
Author(s):  
Nguyen Huy Tuan ◽  
Tomás Caraballo ◽  
Tran Ngoc Thach

In this paper, we study two terminal value problems (TVPs) for stochastic bi-parabolic equations perturbed by standard Brownian motion and fractional Brownian motion with Hurst parameter h ∈ ( 1 2 , 1 ) separately. For each problem, we provide a representation for the mild solution and find the space where the existence of the solution is guaranteed. Additionally, we show clearly that the solution of each problem is not stable, which leads to the ill-posedness of each problem. Finally, we propose two regularization results for both considered problems by using the filter regularization method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


2020 ◽  
Vol 28 (4) ◽  
pp. 291-306
Author(s):  
Tayeb Bouaziz ◽  
Adel Chala

AbstractWe consider a stochastic control problem in the case where the set of the control domain is convex, and the system is governed by fractional Brownian motion with Hurst parameter {H\in(\frac{1}{2},1)} and standard Wiener motion. The criterion to be minimized is in the general form, with initial cost. We derive a stochastic maximum principle of optimality by using two famous approaches. The first one is the Doss–Sussmann transformation and the second one is the Malliavin derivative.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Yuquan Cang ◽  
Junfeng Liu ◽  
Yan Zhang

We study the asymptotic behavior of the sequenceSn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2),asntends to infinity, whereSH1andSH2are two independent subfractional Brownian motions with indicesH1andH2, respectively.Kis a kernel function and the bandwidth parameterαsatisfies some hypotheses in terms ofH1andH2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motionSH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.


2021 ◽  
pp. 2140011
Author(s):  
Tomás Caraballo ◽  
Tran Bao Ngoc ◽  
Tran Ngoc Thach ◽  
Nguyen Huy Tuan

This paper is concerned with the mathematical analysis of terminal value problems (TVP) for a stochastic nonclassical diffusion equation, where the source is assumed to be driven by classical and fractional Brownian motions (fBms). Our two problems are to study in the sense of well-posedness and ill-posedness meanings. Here, a TVP is a problem of determining the statistical properties of the initial data from the final time data. In the case [Formula: see text], where [Formula: see text] is the fractional order of a Laplace operator, we show that these are well-posed under certain assumptions. We state a definition of ill-posedness and obtain the ill-posedness results for the problems when [Formula: see text]. The major analysis tools in this paper are based on properties of stochastic integrals with respect to the fBm.


Sign in / Sign up

Export Citation Format

Share Document