Generalized Frattini Subgroups of Finite Groups. II

1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.

2014 ◽  
Vol 57 (3) ◽  
pp. 648-657 ◽  
Author(s):  
Juping Tang ◽  
Long Miao

AbstractLet G be a finite group and let ℱ be a class of groups. Then Zℱϕ(G) is the ℱϕ-hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are ℱ-central in G. A subgroup H is called ℳ-supplemented in a finite group G if there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H. The main purpose of this paper is to prove the following: Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of F*(E) has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is 𝓜-supplemented in G, then E ≤ Zuϕ(G).


2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.


1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


2011 ◽  
Vol 53 (2) ◽  
pp. 401-410 ◽  
Author(s):  
LONG MIAO

AbstractA subgroup H is called weakly -supplemented in a finite group G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal subgroup of G contained in H. In this paper we will prove the following: Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 ⊴ E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement or weak -supplement in G, then G is p-nilpotent.


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2007 ◽  
Vol 14 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A. Y. Alsheik Ahmad ◽  
J. J. Jaraden ◽  
Alexander N. Skiba

Let G be a finite group. We say that a subgroup H of G is [Formula: see text]-normal in G if G has a subnormal subgroup T such that TH = G and (H ∩ T)HG/HG is contained in the [Formula: see text]-hypercenter [Formula: see text] of G/HG, where [Formula: see text] is the class of the finite supersoluble groups. We study the structure of G under the assumption that some subgroups of G are [Formula: see text]-normal in G.


1970 ◽  
Vol 22 (1) ◽  
pp. 41-46 ◽  
Author(s):  
James C. Beidleman

1. The Frattini and Fitting subgroups of a finite group G have been useful subgroups in establishing necessary and sufficient conditions for G to be solvable. In [1, pp. 657-658, Theorem 1], Baer used these subgroups to establish several very interesting equivalent conditions for G to be solvable. One of Baer's conditions is that ϕ(S), the Frattini subgroup of S, is a proper subgroup of F(S), the Fitting subgroup of S, for each subgroup S ≠ 1 of G. Using the Fitting subgroup and generalized Frattini subgroups of certain subgroups of G we provide certain equivalent conditions for G to be a solvable group. One such condition is that F(S) is not a generalized Frattini subgroup of S for each subgroup S ≠ 1 of G. Our results are given in Theorem 1.


1953 ◽  
Vol 5 ◽  
pp. 477-497 ◽  
Author(s):  
D. G. Higman

If there is given a subgroup 5 of a (finite) group G, we may ask what information is to be obtained about the structure of G from a knowledge of the location of S in G. Thus, for example, famed theorems of Frobenius and Burnside give criteria for the existence of a normal subgroup N of G such that G = NS and 1 = N ⋂ S, and hence in particular for the non-simplicity of G. To aid in locating S in G, and to facilitate exploitation of the transfer, we single out a descending chain of normal subgroups of S. Namely, we introduce the focal series of S in G by means of the recursive formulae


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


2021 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Haval M. Mohammed Salih ◽  
Sanaa M. S. Omer

<p style="text-align: left;" dir="ltr"> Let <em>G</em> be a finite group and let <em>N</em> be a fixed normal subgroup of <em>G</em>.  In this paper, a new kind of graph on <em>G</em>, namely the intersection graph is defined and studied. We use <img src="/public/site/images/ikhsan/equation.png" alt="" width="6" height="4" /> to denote this graph, with its vertices are all normal subgroups of <em>G</em> and two distinct vertices are adjacent if their intersection in <em>N</em>. We show some properties of this graph. For instance, the intersection graph is a simple connected with diameter at most two. Furthermore we give the graph structure of <img src="/public/site/images/ikhsan/equation_(1).png" alt="" width="6" height="4" /> for some finite groups such as the symmetric, dihedral, special linear group, quaternion and cyclic groups. </p>


Sign in / Sign up

Export Citation Format

Share Document