prime 2
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 38 (12) ◽  
pp. 121401
Author(s):  
Zhu-Fang Cui ◽  
Daniele Binosi ◽  
Craig D. Roberts ◽  
Sebastian M. Schmidt

Using a procedure based on interpolation via continued fractions supplemented by statistical sampling, we analyze proton magnetic form factor data obtained via electron+proton scattering on Q 2 ∈ [0.027, 0.55] GeV2 with the goal of determining the proton magnetic radius. The approach avoids assumptions about the function form used for data interpolation and ensuing extrapolation onto Q 2 ≃ 0 for extraction of the form factor slope. In this way, we find r M = 0.817(27) fm. Regarding the difference between proton electric and magnetic radii calculated in this way, extant data are seen to be compatible with the possibility that the slopes of the proton Dirac and Pauli form factors, F 1,2(Q 2), are not truly independent observables; to wit, the difference F ′ 1 ( 0 ) − F ′ 2 ( 0 ) / κ p = [ 1 + κ p ] / [ 4 m p 2 ] , viz., the proton Foldy term.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongliang Gao ◽  
Jing Xu

AbstractIn this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) , and $f(u)>0$ f ( u ) > 0 for $0< u< L$ 0 < u < L . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies $f''(u)>0$ f ″ ( u ) > 0 and $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) for $0< u< L$ 0 < u < L . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Write $\mathbb A$ for the 2-primary Steenrod algebra, which is the algebra of stable natural endomorphisms of the mod 2 cohomology functor on topological spaces. Working at the prime 2, computing the cohomology of $\mathbb A$ is an important problem of Algebraic topology, because it is the initial page of the Adams spectral sequence converging to stable homotopy groups of the spheres. A relatively efficient tool to describe this cohomology is the Singer algebraic transfer of rank $n$ in \cite{Singer}, which passes from a certain subquotient of a divided power algebra to the cohomology of $\mathbb A.$ Singer predicted that this transfer is a monomorphism, but this remains open for $n\geq 4.$ This short note is to verify the conjecture in the ranks 4 and 5 and some generic degrees.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \ldots, x_q$ with $|x_i|= 1.$ Equivalently, one can write down explicitly a basis for the graded vector space $Q^{\otimes q} := k\otimes_{A} P_q$ in each non-negative degree $n.$ This is the content of the classical "hit problem" of Frank Peterson. Based on this problem, we are interested in the $q$-th algebraic transfer $Tr_q^{A}$ of W. Singer \cite{W.S1}, which is one of the useful tools for describing mod-2 cohomology of the algebra $A.$ This transfer is a linear map from the space of $GL_q(k)$-coinvariant $k\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\otimes q}$ to the $k$-cohomology group of the Steenrod algebra, ${\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The present paper is to investigate this algebraic transfer for the cohomological degree $q = 4.$ More specifically, basing the techniques of the hit problem of four variables, we explicitly determine the structure of $k\otimes _{GL_4(k)} P((P_4)_{n}^{*})$ in some generic degrees $n.$ Applying these results and a representation of the rank 4 transfer over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. Also, we give some conjectures on the dimensions of $k\otimes_{GL_q(k)} ((P_4)_n^{*})$ for the remaining degrees $n.$ As a consequence, Singer's conjecture for the algebraic transfer is true in the rank 4 case. This study and our previous results \cite{D.P11, D.P12} have been provided a panorama of the behavior of $Tr_4^{A}.$


2021 ◽  
Author(s):  
Đặng Võ Phúc

Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \ldots, x_q$ with $|x_i|= 1.$ Equivalently, one can write down explicitly a basis for the graded vector space $Q^{\otimes q} := k\otimes_{A} P_q$ in each non-negative degree $n.$ This problem is the content of "hit problem" of Frank Peterson. We study the $q$-th Singer algebraic transfer $Tr_q^{A}$, which is a homomorphism from the space of $GL_q(k)$-coinvariant $k\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\otimes q}$ to the Adams $E_2$-term, ${\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The Singer transfer is one of the useful tools for describing mysterious Ext groups. In the present study, by using techniques of the hit problem of four variables, we explicitly determine the structure of the spaces $k\otimes _{GL_4(k)} P((P_4)_{n}^{*})$ in some generic degrees $n.$ Applying these results and the representation of the fourth transfer over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. These new results confirmed Singer's conjecture for the monomorphism of the rank $4$ transfer. Our approach is different from that of Singer.


2021 ◽  
Vol 141 (5) ◽  
pp. S75
Author(s):  
G. Yosipovitch ◽  
N. Mollanazar ◽  
S. Ständer ◽  
S.G. Kwatra ◽  
J. Luo ◽  
...  

Author(s):  
Xinhua Gao ◽  
ShouKun Xu ◽  
Lei Xue

Abstract This paper investigates the spatial structure and dynamical state of the old open cluster NGC 2112 based on likely cluster members from Gaia Early Data Release 3. Using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, we find 1193 likely cluster members down to G ∼ 21 mag within a radius of 1.°5 from the cluster center. These likely cluster members can be divided into 865 core members and 328 border members by DBSCAN. We find that the core members are, on average, significantly brighter and more centrally concentrated than the border members. This suggests the existence of clear mass segregation within the cluster. We find that the outer regions of the cluster exhibit a slightly elongated shape, which may be caused by external tidal perturbations. We estimate a distance of D = 1108 ± 3 pc for the cluster based on bright core members. We find that NGC 2112 has a cluster radius of Rcl ∼ 40′ (∼12.9 pc) and a core radius of $R_{\rm c} \sim {4{^{\prime }_{.}}8} \pm {0{^{\prime }_{.}}2}$ (∼1.5 pc). This indicates that NGC 2112 has a central concentration parameter of C = log (Rcl/Rc) ∼ 0.92, which is significantly larger than previously thought. In addition, we estimate a total mass of Mcl = 858 ± 12 M⊙ and an initial mass of Mini = (2.2 ± 0.5) × 104 M⊙ for the cluster. This implies that NGC 2112 may have lost more than $90\%$ of its initial mass. Based on the obtained distance and kinematical data, we also calculate the Galactic orbit of the cluster.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Let $A$ denote the Steenrod algebra at the prime 2 and let $k = \mathbb Z_2.$ An open problem of homotopy theory is to determine a minimal set of $A$-generators for the polynomial ring $P_q = k[x_1, \ldots, x_q] = H^{*}(k^{q}, k)$ on $q$ generators $x_1, \ldots, x_q$ with $|x_i|= 1.$ Equivalently, can one write down a basis for the graded vector space $Q^{\otimes q} := k\otimes_{A} P_q$ in each non-negative degree $n.$ This problem is the content of "hit problem" of Frank Peterson. We study the $q$-th Singer algebraic transfer $Tr_q^{A}$, which is a homomorphism from the space of $GL_q(k)$-coinvariants $k\otimes _{GL_q(k)} P((P_q)_n^{*})$ of $Q^{\otimes q}$ to the Adams $E_2$-terms, ${\rm Ext}_{A}^{q, q+n}(k, k).$ Here $GL_q(k)$ is the general linear group of degree $q$ over the field $k,$ and $P((P_q)_n^{*})$ is the primitive part of $(P_q)^{*}_n$ under the action of $A.$ The Singer transfer is one of the useful tools for describing mysterious Ext groups. In the present study, by using techniques of the hit problem of four variables, we explicitly determine the structure of the spaces $k\otimes _{GL_4(k)} P((P_4)_{n_j}^{*})$ in some generic degrees. Applying these results and the representation of the transfer $Tr_4^{A}$ over the lambda algebra, we show that $Tr_4^{A}$ is an isomorphism in respective degrees. Our approach is different from that of Singer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nariel Monteiro

Abstract Let O 2 \mathcal{O}_{2} and O 2 ′ \mathcal{O}^{\prime}_{2} be two distinct finite local rings of length two with residue field of characteristic 𝑝. Let G ⁢ ( O 2 ) \mathbb{G}(\mathcal{O}_{2}) and G ⁢ ( O 2 ′ ) \mathbb{G}(\mathcal{O}^{\prime}_{2}) be the groups of points of any reductive group scheme 𝔾 over ℤ such that 𝑝 is very good for G × F q \mathbb{G}\times\mathbb{F}_{q} or G = GL n \mathbb{G}=\operatorname{GL}_{n} . We prove that there exists an isomorphism of group algebras K ⁢ G ⁢ ( O 2 ) ≅ K ⁢ G ⁢ ( O 2 ′ ) K\mathbb{G}(\mathcal{O}_{2})\cong K\mathbb{G}(\mathcal{O}^{\prime}_{2}) , where 𝐾 is a sufficiently large field of characteristic different from 𝑝.


Sign in / Sign up

Export Citation Format

Share Document