A SURVEY ON FREE SUBGROUPS IN THE GROUP OF UNITS OF GROUP RINGS

2013 ◽  
Vol 12 (06) ◽  
pp. 1350004 ◽  
Author(s):  
JAIRO Z. GONÇALVES ◽  
ÁNGEL DEL RÍO

In this survey we revise the methods and results on the existence and construction of free groups of units in group rings, with special emphasis in integral group rings over finite groups and group algebras. We also survey results on constructions of free groups generated by elements which are either symmetric or unitary with respect to some involution and other results on which integral group rings have large subgroups which can be constructed with free subgroups and natural group operations.

2016 ◽  
Vol 162 (2) ◽  
pp. 191-209
Author(s):  
ÁNGEL DEL RÍO ◽  
PAVEL ZALESSKII

AbstractWe classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SLn(R), with R an order in a finite dimensional rational division algebra.


1980 ◽  
Vol 32 (6) ◽  
pp. 1342-1352 ◽  
Author(s):  
B. Hartley ◽  
P. F. Pickel

Let G be a group, ZG the group ring of G over the ring Z of integers, and U(ZG) the group of units of ZG. One method of investigating U(ZG) is to choose some property of groups and try to determine the groups G such that U(ZG) enjoys that property. For example Sehgal and Zassenhaus [9] have given necessary and sufficient conditions for U(ZG) to be nilpotent (see also [7]), and the same authors have investigated when U(ZG) is an FC (finite-conjugate) group [10]. For a survey of related questions, see [3]. In this paper we consider when U(ZG) contains a free subgroup of rank 2. We conjecture that if this does not happen, then every finite subgroup of G is normal, from which various other conclusions then follow (see Lemma 4).


2021 ◽  
Vol 28 (04) ◽  
pp. 561-568
Author(s):  
Jinke Hai ◽  
Lele Zhao

Let [Formula: see text] be an extension of a finite characteristically simple group by an abelian group or a finite simple group. It is shown that every Coleman automorphism of [Formula: see text] is an inner automorphism. Interest in such automorphisms arises from the study of the normalizer problem for integral group rings.


1976 ◽  
Vol 28 (5) ◽  
pp. 954-960 ◽  
Author(s):  
César Polcino Milies

Let R be a ring with unit element and G a finite group. We denote by RG the group ring of the group G over R and by U(RG) the group of units of this group ring.The study of the nilpotency of U(RG) has been the subject of several papers.


Sign in / Sign up

Export Citation Format

Share Document