The diameter of power graphs of symmetric groups

2018 ◽  
Vol 17 (12) ◽  
pp. 1850234 ◽  
Author(s):  
Kobra Pourghobadi ◽  
Sayyed Heidar Jafari

The power graph of a group [Formula: see text] is the simple graph [Formula: see text], with vertex-set [Formula: see text] and vertices [Formula: see text] and [Formula: see text] are adjacent, if and only if [Formula: see text] and either [Formula: see text] or [Formula: see text] for some positive integer [Formula: see text]. The proper power graph of [Formula: see text], denoted [Formula: see text], is the graph obtained from [Formula: see text] by deleting the vertex [Formula: see text]. In [On the connectivity of proper power graphs of finite groups, Comm. Algebra 43 (2015) 4305–4319], it is proved that if [Formula: see text] and neither [Formula: see text] nor [Formula: see text] is a prime, then [Formula: see text] is connected and [Formula: see text]. In this paper, we improve the diameter bound of [Formula: see text] for which [Formula: see text] is connected. We show that [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. We also describe a number of short paths in these power graphs.

2018 ◽  
Vol 17 (10) ◽  
pp. 1850184 ◽  
Author(s):  
Ramesh Prasad Panda ◽  
K. V. Krishna

The power graph of a group [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices are adjacent if one is a power of the other. This paper investigates the minimal separating sets of power graphs of finite groups. For power graphs of finite cyclic groups, certain minimal separating sets are obtained. Consequently, a sharp upper bound for their connectivity is supplied. Further, the components of proper power graphs of [Formula: see text]-groups are studied. In particular, the number of components of that of abelian [Formula: see text]-groups are determined.


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2014 ◽  
Vol 13 (07) ◽  
pp. 1450040 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
S. Rahbariyan ◽  
W. J. Shi

The power graph [Formula: see text] of a group G is a simple graph whose vertex-set is G and two vertices x and y in G are adjacent if and only if one of them is a power of the other. The subgraph [Formula: see text] of [Formula: see text] is obtained by deleting the vertex 1 (the identity element of G). In this paper, we first investigate some properties of the power graph [Formula: see text] and its subgraph [Formula: see text]. We next provide necessary and sufficient conditions for a power graph [Formula: see text] to be a strongly regular graph, a bipartite graph or a planar graph. Finally, we obtain some infinite families of finite groups G for which the power graph [Formula: see text] contains some cut-edges.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850146 ◽  
Author(s):  
Sudip Bera ◽  
A. K. Bhuniya

Given a group [Formula: see text], the enhanced power graph of [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are edge connected in [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Here, we show that the graph [Formula: see text] is complete if and only if [Formula: see text] is cyclic; and [Formula: see text] is Eulerian if and only if [Formula: see text] is odd. We characterize all abelian groups and all non-abelian [Formula: see text]-groups [Formula: see text] such that [Formula: see text] is dominatable. Besides, we show that there is a one-to-one correspondence between the maximal cliques in [Formula: see text] and the maximal cyclic subgroups of [Formula: see text].


2021 ◽  
Vol 19 (1) ◽  
pp. 850-862
Author(s):  
Huani Li ◽  
Xuanlong Ma ◽  
Ruiqin Fu

Abstract The intersection power graph of a finite group G G is the graph whose vertex set is G G , and two distinct vertices x x and y y are adjacent if either one of x x and y y is the identity element of G G , or ⟨ x ⟩ ∩ ⟨ y ⟩ \langle x\rangle \cap \langle y\rangle is non-trivial. In this paper, we completely classify all finite groups whose intersection power graphs are toroidal and projective-planar.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2019 ◽  
Vol 19 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Samir Zahirović ◽  
Ivica Bošnjak ◽  
Rozália Madarász

The enhanced power graph [Formula: see text] of a group [Formula: see text] is the graph with vertex set [Formula: see text] such that two vertices [Formula: see text] and [Formula: see text] are adjacent if they are contained in the same cyclic subgroup. We prove that finite groups with isomorphic enhanced power graphs have isomorphic directed power graphs. We show that any isomorphism between undirected power graph of finite groups is an isomorphism between enhanced power graphs of these groups, and we find all finite groups [Formula: see text] for which [Formula: see text] is abelian, all finite groups [Formula: see text] with [Formula: see text] being prime power, and all finite groups [Formula: see text] with [Formula: see text] being square-free. Also, we describe enhanced power graphs of finite abelian groups. Finally, we give a characterization of finite nilpotent groups whose enhanced power graphs are perfect, and we present a sufficient condition for a finite group to have weakly perfect enhanced power graph.


Author(s):  
Xuanlong Ma

Let [Formula: see text] be a finite group. The power graph of [Formula: see text] is the undirected graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if one is a power of the other. The reduced power graph of [Formula: see text] is the subgraph of the power graph of [Formula: see text] obtained by deleting all edges [Formula: see text] with [Formula: see text], where [Formula: see text] and [Formula: see text] are two distinct elements of [Formula: see text]. In this paper, we determine the proper connection number of the reduced power graph of [Formula: see text]. As an application, we also determine the proper connection number of the power graph of [Formula: see text].


2021 ◽  
Vol 6 (10) ◽  
pp. 11508-11515
Author(s):  
Zhiqun Li ◽  
◽  
Huadong Su

<abstract><p>Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.</p></abstract>


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5323-5334 ◽  
Author(s):  
Asma Hamzeh ◽  
Ali Ashrafi

Let G be a finite group. The power graph P(G) and its main supergraph S(G) are two simple graphs with the same vertex set G. Two elements x,y ? G are adjacent in the power graph if and only if one is a power of the other. They are joined in S(G) if and only if o(x)|o(y) or o(y)|o(x). The aim of this paper is to compute the characteristic polynomial of these graph for certain finite groups. As a consequence, the spectrum and Laplacian spectrum of these graphs for dihedral, semi-dihedral, cyclic and dicyclic groups were computed.


Sign in / Sign up

Export Citation Format

Share Document