scholarly journals On Total Vertex Irregularity Strength of Hexagonal Cluster Graphs

Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .

2011 ◽  
Vol 61 (6) ◽  
Author(s):  
Lutz Volkmann

AbstractLet k be a positive integer, and let G be a simple graph with vertex set V (G). A vertex of a graph G dominates itself and all vertices adjacent to it. A subset S ⊆ V (G) is a k-tuple dominating set of G if each vertex of V (G) is dominated by at least k vertices in S. The k-tuple domatic number of G is the largest number of sets in a partition of V (G) into k-tuple dominating sets.In this paper, we present a lower bound on the k-tuple domatic number, and we establish Nordhaus-Gaddum inequalities. Some of our results extends those for the classical domatic number.


2018 ◽  
Vol 10 (2) ◽  
pp. 9
Author(s):  
Nugroho Arif Sudibyo ◽  
Siti Komsatun

For a simple graph G with vertex set V (G) and edge set E(G), a labeling $\Phi:V(G)\cup U(G)\rightarrow\{1,2,...k\}$ is  called  a  vertex  irregular  total  k- labeling of G if for any two diferent vertices x and y, their weights wt(x) and wt(y) are distinct.  The weight wt(x) of a vertex x in G is the sum of its label and the labels of all edges incident with the given vertex x.  The total vertex irregularity strength of G, tvs(G), is the smallest positive integer k for which G has a vertex irregular total k-labeling.  In this paper, we study the total vertex irregularity strength of some class of graph.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050083
Author(s):  
I. Tarawneh ◽  
R. Hasni ◽  
A. Ahmad ◽  
G. C. Lau ◽  
S. M. Lee

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text], respectively. An edge irregular [Formula: see text]-labeling of [Formula: see text] is a labeling of [Formula: see text] with labels from the set [Formula: see text] in such a way that for any two different edges [Formula: see text] and [Formula: see text], their weights [Formula: see text] and [Formula: see text] are distinct. The weight of an edge [Formula: see text] in [Formula: see text] is the sum of the labels of the end vertices [Formula: see text] and [Formula: see text]. The minimum [Formula: see text] for which the graph [Formula: see text] has an edge irregular [Formula: see text]-labeling is called the edge irregularity strength of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the exact value of edge irregularity strength of corona product of graphs with cycle.


2020 ◽  
Vol 12 (4) ◽  
pp. 537-543
Author(s):  
A. Rana

A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers (usually positive integers).  For a simple graph G = (V, E) with vertex set V and edge set E, a labeling  Φ: V ∪ E → {1, 2, ..., k} is called total k-labeling. The associated vertex weight of a vertex x∈ V under a total k-labeling  Φ is defined as wt(x) = Φ(x) + ∑y∈N(x) Φ(xy) where N(x) is the set of neighbors of the vertex x. A total k-labeling is defined to be a vertex irregular total labeling of a graph, if for every two different vertices x and y of G, wt(x)≠wt(y). The minimum k for which  a graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G, tvs(G). In this paper, total vertex irregularity strength of interval graphs is studied. In particular, an efficient algorithm is designed to compute tvs of proper interval graphs and bounds of tvs is presented for interval graphs.


2021 ◽  
Vol 6 (10) ◽  
pp. 11508-11515
Author(s):  
Zhiqun Li ◽  
◽  
Huadong Su

<abstract><p>Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.</p></abstract>


2012 ◽  
Vol 04 (01) ◽  
pp. 1250006
Author(s):  
S. M. SHEIKHOLESLAMI ◽  
L. VOLKMANN

Let k be a positive integer, and let G be a simple graph with vertex set V(G). A function f : V(G) → {±1, ±2, …, ±k} is called a signed total {k}-dominating function if ∑u∈N(v) f(u) ≥ k for each vertex v ∈ V(G). A set {f1, f2, …, fd} of signed total {k}-dominating functions on G with the property that [Formula: see text] for each v∈V(G), is called a signed total {k}-dominating family (of functions) on G. The maximum number of functions in a signed total {k}-dominating family on G is the signed total {k}-domatic number of G, denoted by [Formula: see text]. Note that [Formula: see text] is the classical signed total domatic number dS(G). In this paper, we initiate the study of signed total k-domatic numbers in graphs, and we present some sharp upper bounds for [Formula: see text]. In addition, we determine [Formula: see text] for several classes of graphs. Some of our results are extensions of known properties of the signed total domatic number.


2019 ◽  
Vol 17 (1) ◽  
pp. 1374-1380
Author(s):  
Josef Šlapal

Abstract Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the 2-adjacency graph on the digital line ℤ and consider the closure operators on ℤm (m a positive integer) that are induced by a special product of m copies of the introduced set of paths. We focus on the case m = 3 and show that the closure operator considered provides the digital space ℤ3 with a connectedness that may be used for defining digital surfaces satisfying a Jordan surface theorem.


2018 ◽  
Vol 16 (1) ◽  
pp. 1573-1581 ◽  
Author(s):  
Josef Šlapal

AbstractFor every positive integer n,we introduce and discuss an isotone Galois connection between the sets of paths of lengths n in a simple graph and the closure operators on the (vertex set of the) graph. We consider certain sets of paths in a particular graph on the digital line Z and study the closure operators associated, in the Galois connection discussed, with these sets of paths. We also focus on the closure operators on the digital plane Z2 associated with a special product of the sets of paths considered and show that these closure operators may be used as background structures on the plane for the study of digital images.


10.37236/806 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jakub Przybyło

Let $G$ be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer $w$, a $w$-weighting of $G$ is a map $f:E(G)\rightarrow \{1,2,\ldots,w\}$. An irregularity strength of $G$, $s(G)$, is the smallest $w$ such that there is a $w$-weighting of $G$ for which $\sum_{e:u\in e}f(e)\neq\sum_{e:v\in e}f(e)$ for all pairs of different vertices $u,v\in V(G)$. A conjecture by Faudree and Lehel says that there is a constant $c$ such that $s(G)\le{n\over d}+c$ for each $d$-regular graph $G$, $d\ge 2$. We show that $s(G) < 16{n\over d}+6$. Consequently, we improve the results by Frieze, Gould, Karoński and Pfender (in some cases by a $\log n$ factor) in this area, as well as the recent result by Cuckler and Lazebnik.


2020 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
I Nengah Suparta ◽  
I Gusti Putu Suharta

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Let </span><em>G</em><span>(</span><span><em>V</em>, <em>E</em></span><span>) </span><span>be a finite simple graph and </span><span>k </span><span>be some positive integer. A vertex </span><em>k</em><span>-labeling of graph </span><em>G</em>(<em>V,E</em>), Φ : <em>V</em> → {1,2,..., <em>k</em>}, is called edge irregular <em>k</em>-labeling if the edge weights of any two different edges in <em>G</em> are distinct, where the edge weight of <em>e</em> = <em>xy</em> ∈ <em>E</em>(<em>G</em>), w<sub>Φ</sub>(e), is defined as <em>w</em><sub>Φ</sub>(<em>e</em>) = Φ(<em>x</em>) + Φ(<em>y</em>). The edge irregularity strength for graph G is the minimum value of k such that Φ is irregular edge <em>k</em>-labeling for <em>G</em>. In this note we derive the edge irregularity strength of chain graphs <em>mK</em><sub>3</sub>−path for m ≢ 3 (mod4) and <em>C</em>[<em>C<sub>n</sub></em><sup>(<em>m</em>)</sup>] for all positive integers <em>n</em> ≡ 0 (mod 4) 3<em>n</em> and <em>m</em>. We also propose bounds for the edge irregularity strength of join graph <em>P<sub>m</sub></em> + <em>Ǩ<sub>n</sub></em> for all integers <em>m, n</em> ≥ 3.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document