On semirings all of whose semimodules have injective envelopes

Author(s):  
S. N. Il’in

It was shown in [Y. Katsov, Tensor products and injective envelopes of semimodules over additively regular semirings, Algebra Colloq. 4 (1997) 121–131.] that each semimodule over an additively regular semiring has an injective envelope. We show the converse statement is true as well; moreover, the result holds even if each finitely generated semimodule has an injective envelope.

2019 ◽  
Vol 18 (06) ◽  
pp. 1950115 ◽  
Author(s):  
Shahabaddin Ebrahimi Atani ◽  
Mehdi Khoramdel ◽  
Saboura Dolati Pish Hesari

We introduce and investigate [Formula: see text]-idempotent invariant modules. We call an endomorphism [Formula: see text] of [Formula: see text], a [Formula: see text]-idempotent endomorphism if [Formula: see text] defined by [Formula: see text] is an idempotent and we call a module [Formula: see text] is [Formula: see text]-idempotent invariant, if it is invariant under [Formula: see text]-idempotents of its injective envelope. We prove a module [Formula: see text] is [Formula: see text]-idempotent invariant if and only if [Formula: see text], [Formula: see text] is quasi-injective, [Formula: see text] is quasi-continuous and [Formula: see text] is [Formula: see text]-injective. The class of rings [Formula: see text] for which every (finitely generated, cyclic, free) [Formula: see text]-module is [Formula: see text]-idempotent invariant is characterized. Moreover, it is proved that if [Formula: see text] is right q.f.d., then every [Formula: see text]-idempotent invariant [Formula: see text]-module is quasi-injective exactly when every nonsingular uniform [Formula: see text]-module is quasi-injective.


2015 ◽  
Vol 219 ◽  
pp. 113-125
Author(s):  
Olgur Celikbas ◽  
Srikanth B. Iyengar ◽  
Greg Piepmeyer ◽  
Roger Wiegand

AbstractTensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modulesNwith the property thatM ⊗RNhas nonzero torsion unlessMis very special. An important example of such a moduleNis the Frobenius powerpeRover a complete intersection domainRof characteristicp> 0.


Author(s):  
Lixin Mao

Let [Formula: see text] be the class of all left [Formula: see text]-modules [Formula: see text] which has a projective resolution by finitely generated projectives. An exact sequence [Formula: see text] of right [Formula: see text]-modules is called neat if the sequence [Formula: see text] is exact for any [Formula: see text]. An exact sequence [Formula: see text] of left [Formula: see text]-modules is called clean if the sequence [Formula: see text] is exact for any [Formula: see text]. We prove that every [Formula: see text]-module has a clean-projective precover and a neat-injective envelope. A morphism [Formula: see text] of right [Formula: see text]-modules is called a neat-phantom morphism if [Formula: see text] for any [Formula: see text]. A morphism [Formula: see text] of left [Formula: see text]-modules is said to be a clean-cophantom morphism if [Formula: see text] for any [Formula: see text]. We establish the relationship between neat-phantom (respectively, clean-cophantom) morphisms and neat (respectively, clean) exact sequences. Also, we prove that every [Formula: see text]-module has a neat-phantom cover with kernel neat-injective and a clean-cophantom preenvelope with cokernel clean-projective.


Author(s):  
Yanhui Wang ◽  
Yuhan Wang ◽  
Xueming Ren ◽  
Kar Ping Shum

Quasi-automatic semigroups are extensions of a Cayley graph of an automatic group. Of course, a quasi-automatic semigroup generalizes an automatic semigroup. We observe that a semigroup [Formula: see text] may be automatic only when [Formula: see text] is finitely generated, while a semigroup may be quasi-automatic but it is not necessary finitely generated. Similar to the usual automatic semigroups, a quasi-automatic semigroup is closed under direct and free products. Furthermore, a semigroup [Formula: see text] is graph automatic if and only if [Formula: see text] with a zero element adjoined is graph automatic, and also a semigroup [Formula: see text] is graph automatic if and only if [Formula: see text] with an identity element adjoined is graph automatic. However, the class of quasi-automatic semigroups is a much wider class than the class of automatic semigroups. In this paper, we show that every automatic semigroup is quasi-automatic but the converse statement is not true (see Example 3.6). In addition, we notice that the quasi-automatic semigroups are invariant under the changing of generators, while a semigroup may be automatic with respect to a finite generating set but not the other. Finally, the connection between the quasi-automaticity of two semigroups [Formula: see text] and [Formula: see text], where [Formula: see text] is a subsemigroup with finite Rees index in [Formula: see text] will be investigated and considered.


Author(s):  
Truong Cong Quynh ◽  
Adel Abyzov ◽  
Dinh Duc Tai

A module is called nilpotent-invariant if it is invariant under any nilpotent endomorphism of its injective envelope [M. T. Koşan and T. C. Quynh, Nilpotent-invaraint modules and rings, Comm. Algebra 45 (2017) 2775–2782]. In this paper, we continue the study of nilpotent-invariant modules and analyze their relationship to (quasi-)injective modules. It is proved that a right module [Formula: see text] over a semiprimary ring is nilpotent-invariant iff all nilpotent endomorphisms of submodules of [Formula: see text] extend to nilpotent endomorphisms of [Formula: see text]. It is also shown that a right module [Formula: see text] over a prime right Goldie ring with [Formula: see text] is nilpotent-invariant iff it is injective. We also study nilpotent-coinvariant modules that are the dual notation of nilpotent-invariant modules. It is proved that if [Formula: see text] is a finitely generated nilpotent-coinvariant right module with [Formula: see text] square-full, then [Formula: see text] is quasi-projective. Some characterizations and structures of nilpotent-coinvariant modules are considered.


2015 ◽  
Vol 219 ◽  
pp. 113-125 ◽  
Author(s):  
Olgur Celikbas ◽  
Srikanth B. Iyengar ◽  
Greg Piepmeyer ◽  
Roger Wiegand

AbstractTensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modules N with the property that M ⊗R N has nonzero torsion unless M is very special. An important example of such a module N is the Frobenius power peR over a complete intersection domain R of characteristic p > 0.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

Sign in / Sign up

Export Citation Format

Share Document