scholarly journals LCM-Lattice, Taylor Bases and Minimal Free Resolutions of a Monomial Ideal

Author(s):  
Ri-Xiang Chen
Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 605
Author(s):  
Lukas Katthän

In this short note we give an elementary description of the linear part of the minimal free resolution of a Stanley-Reisner ring of a simplicial complex Δ . Indeed, the differentials in the linear part are simply a compilation of restriction maps in the simplicial cohomology of induced subcomplexes of Δ . Along the way, we also show that if a monomial ideal has at least one generator of degree 2, then the linear strand of its minimal free resolution can be written using only ± 1 coefficients.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950118
Author(s):  
Rachelle R. Bouchat ◽  
Tricia Muldoon Brown

We introduce a squarefree monomial ideal associated to the set of domino tilings of a [Formula: see text] rectangle and proceed to study the associated minimal free resolution. In this paper, we use results of Dalili and Kummini to show that the Betti numbers of the ideal are independent of the underlying characteristic of the field, and apply a natural splitting to explicitly determine the projective dimension and Castelnuovo–Mumford regularity of the ideal.


2020 ◽  
pp. 1-20
Author(s):  
Mengyuan Zhang

Abstract We study bundles on projective spaces that have vanishing lower cohomologies using their short minimal free resolutions. We partition the moduli $\mathcal{M}$ according to the Hilbert function H and classify all possible Hilbert functions H of such bundles. For each H, we describe a stratification of $\mathcal{M}_H$ by quotients of rational varieties. We show that the closed strata form a graded lattice given by the Betti numbers.


1990 ◽  
Vol 118 ◽  
pp. 203-216 ◽  
Author(s):  
Mitsuyasu Hashimoto

Let R be a Noetherian commutative ring with, unit element, and Xij be variables with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let S = R[xij] be the polynomial ring over R, and It be the ideal in S, generated by the t × t minors of the generic matrix (xij) ∈ Mm, n(S). For many years there has been considerable interest in finding a minimal free resolution of S/It, over arbitrary base ring R. If we have a minimal free resolution P. over R = Z, the ring of integers, then R′ ⊗z P. is a resolution of S/It over the base ring R′.


Sign in / Sign up

Export Citation Format

Share Document