Retinal ganglion cells of the accessory optic system: A review

2013 ◽  
Vol 12 (01) ◽  
pp. 145-162 ◽  
Author(s):  
Igor I. Pushchin
1980 ◽  
Vol 190 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Clyde W. Oyster ◽  
John I. Simpson ◽  
Ellen S. Takahashi ◽  
Robert E. Soodak

1997 ◽  
Vol 78 (2) ◽  
pp. 614-627 ◽  
Author(s):  
Naoki Kogo ◽  
Michael Ariel

Kogo, Naoki and Michael Ariel. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. J. Neurophysiol. 78: 614–627, 1997. Using an eye-attached isolated brain stem preparation of a turtle, Pseudemys scripta elegans, in conjunction with whole cell patch techniques, we recorded intracellular activity of accessory optic system neurons in the basal optic nucleus (BON). This technique offered long-lasting stable recordings of individual synaptic events. In the reduced preparation (most of the dorsal structures were removed), large spontaneous excitatory synaptic inputs [excitatory postsynaptic potentials (EPSPs)] were frequently recorded. Spontaneous inhibitory postsynaptic potentials were rarely observed except in few cases. Most EPSPs disappeared after injection of lidocaine into the retina. A few EPSPs of small size remained, suggesting that these EPSPs either were from intracranial sources or may have been miniature spontaneous synaptic potentials from retinal ganglion cell axon terminals. Population EPSPs were synchronously evoked by electrical stimulation of the contralateral optic nerve. Their constant onset latency and their ability to follow short-interval paired stimulation indicated that much of the population EPSP's response was monosynaptic. Visually evoked BON spikes and EPSP inputs to BON showed direction sensitivity when a moving pattern was projected onto the entire contralateral retina. With the use of smaller moving patterns, the receptive field of an individual BON cell was identified. A small spot of light, projected within the receptive field, guided the placement of a bipolar stimulation electrode to activate retinal ganglion cells that provided input to that BON cell. EPSPs evoked by this retinal microstimulation showed features of unitary EPSPs. Those EPSPs had distinct low current thresholds. Recruitment of other inputs was only evident when the stimulation level was increased substantially above threshold. The average size of evoked unitary EPSPs was 7.8 mV, confirming the large size of synaptic inputs of this system relative to nonsynaptic noise. EPSP shape was plotted (rise time vs. amplitude), with the use of either evoked unitary EPSPs or spontaneous EPSPs. Unlike samples of spontaneous EPSPs, data from many unitary EPSPs formed distinct clusters in these scatterplots, indicating that these EPSPs had a unique shape among the whole population of EPSPs. In most BON cells studied, hyperpolarization-activated channels caused a slow depolarization sag that reached a plateau within 0.5–1 s. This property suggests that BON cells may be more complicated than a simple site for convergence of direction-sensitive retinal ganglion cells to form a central retinal slip signal for control of oculomotor reflexes.


1991 ◽  
Vol 65 (5) ◽  
pp. 1022-1033 ◽  
Author(s):  
A. F. Rosenberg ◽  
M. Ariel

1. The direct retinal input pathway to the basal optic nucleus (BON), the primary nucleus of the turtle accessory optic system, was characterized physiologically. We tested the hypothesis that directional information encoded in retinal ganglion cells can influence the BON via a direct pathway. Using an in vitro whole-brain, eyes-attached preparation, we demonstrated the directness of this pathway by 1) antidromic activation of retinal ganglion cells from the contralateral BON and 2) orthodromic activation of the BON from the contralateral optic nerve. 2. Of 72 physiologically classified retinal ganglion cells, 9 could be antidromically activated from the contralateral BON with low current (less than 200 micro A). Eight of these cells were direction-sensitive (DS). The ninth cell did not respond to visual stimulus movement. The antidromic latencies ranged from 2.2 to 6.1 ms with a mean of 3.8 ms. These latencies were quite consistent for each cell, having an average SD of 0.08 ms. Moreover, consistent responses could always be recorded at stimulation rates up to 100 Hz. 3. With current stimulation of the contralateral optic nerve, the orthodromic conduction latency of 17 BON single units ranged from 2.5 to 6.6 ms with a mean of 4.6 ms. These latencies were more variable for an individual cell, having an average SD of 0.3 ms. Responses to individual current pulses could never be consistently evoked at stimulation rates greater than 40 Hz. 4. DS responses were recorded in BON single units after the removal of the dorsal midbrain, including the optic tectum and pretectum as well as the telencephalon. Three of these cells were activated orthodromically by current stimulation delivered to the contralateral optic nerve. Thus directional information reaches the BON via a direct projection from the contralateral retina. 5. Visual response properties of DS retinal ganglion cells were compared with those of BON cells to examine the transformations that take place in the brain stem. Applying a limacon model to the responses of both DS retinal ganglion cells and BON cells revealed that both types of cells have very similar direction tuning. However, the distribution of maximally responsive directions in the retina may differ from that of the BON. 6. Because DS retinal ganglion cells project directly to the BON, and because BON cells lose their direction sensitivity after retinal application of GABA antagonists, we conclude that the BON receives essential directional information directly from DS retinal ganglion cells. This directional information in the BON may represent a retinal slip error signal necessary for retinal image stabilization.


Sign in / Sign up

Export Citation Format

Share Document