Atomic systems for operators

Author(s):  
Khole Timothy Poumai ◽  
Shah Jahan

Gavruta [L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012) 139–144] introduced the notion of [Formula: see text]-frame and atomic system for an operator [Formula: see text] in Hilbert spaces. We extend these notions to Banach spaces and obtain various new results. A necessary and sufficient condition for the existence of an atomic system for an operator [Formula: see text] in a Banach space is given. Also, a characterization for the family of local atoms of subspaces of Banach spaces has been given. Further, we give methods to construct an atomic system for an operator [Formula: see text] from a given Bessel sequence and an [Formula: see text]-Bessel sequence. Finally, a result related to stability of atomic system for an operator [Formula: see text] in a Banach space has been given.

Author(s):  
P. K. JAIN ◽  
S. K. KAUSHIK ◽  
NISHA GUPTA

Banach frame systems in Banach spaces have been defined and studied. A sufficient condition under which a Banach space, having a Banach frame, has a Banach frame system has been given. Also, it has been proved that a Banach space E is separable if and only if E* has a Banach frame ({φn},T) with each φn weak*-continuous. Finally, a necessary and sufficient condition for a Banach Bessel sequence to be a Banach frame has been given.


Author(s):  
SHALU SHARMA

Bi-Banach frames in Banach spaces have been defined and studied. A necessary and sufficient condition under which a Banach space has a Bi-Banach frame has been given. Finally, Pseudo exact retro Banach frames have been defined and studied.


1995 ◽  
Vol 38 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Zong-Ben Xu ◽  
Yao-Lin Jiang ◽  
G. F. Roach

Let A be a quasi-accretive operator defined in a uniformly smooth Banach space. We present a necessary and sufficient condition for the strong convergence of the semigroups generated by – A and of the steepest descent methods to a zero of A.


Author(s):  
P. K. JAIN ◽  
S. K. KAUSHIK ◽  
VARINDER KUMAR

Frames of subspaces for Banach spaces have been introduced and studied. Examples and counter-examples to distinguish various types of frames of subspaces have been given. It has been proved that if a Banach space has a Banach frame, then it also has a frame of subspaces. Also, a necessary and sufficient condition for a sequence of projections, associated with a frame of subspaces, to be unique has been given. Finally, we consider complete frame of subspaces and prove that every weakly compactly generated Banach space has a complete frame of subspaces.


1986 ◽  
Vol 34 (1) ◽  
pp. 87-92
Author(s):  
M. A. Ariño

Necessary and sufficient condition are given for an infinite dimensional subspace of a p-Banach space X with basis to contain a basic sequence which can be extended to a basis of X.


2004 ◽  
Vol 69 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Tomonari Suzuki

In this paper, we discuss a necessary and sufficient condition for common fixed points of two nonexpansive mappings. We then prove a convergence theorem to a common fixed point. Finally, we discuss the existence of a nonexpansive retraction onto the set of common fixed points of nonexpansive mappings. In these theorems, we do not assume the strict (uniform) convexity of the norm of the Banach space.


Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.


2005 ◽  
Vol 178 ◽  
pp. 55-61 ◽  
Author(s):  
Guantie Deng

Let α be a nonnegative continuous function on ℝ. In this paper, the author obtains a necessary and sufficient condition for polynomials with gaps to be dense in Cα, where Cα is the weighted Banach space of complex continuous functions ƒ on ℝ with ƒ(t) exp(−α(t)) vanishing at infinity.


Author(s):  
Bahram Dastourian ◽  
Mohammad Janfada

In this paper, the concept of a family of local atoms in a Banach space is introduced by using a semi-inner product (s.i.p.). Then this concept is generalized to an atomic system for operators in Banach spaces. We also give some characterizations of atomic systems leading to new frames for operators. In addition, a reconstruction formula is obtained. The characterizations of atomic systems allow us to state some results for sampling theory in s.i.p reproducing kernel Banach spaces. Finally, we define the concept of frame operator for these kinds of frames in Banach spaces and then we establish a perturbation result in this framework.


2012 ◽  
Vol 54 (3) ◽  
pp. 493-505 ◽  
Author(s):  
SEN ZHU ◽  
CHUN GUANG LI ◽  
TING TING ZHOU

AbstractA-Weyl's theorem and property (ω), as two variations of Weyl's theorem, were introduced by Rakočević. In this paper, we study a-Weyl's theorem and property (ω) for functions of bounded linear operators. A necessary and sufficient condition is given for an operator T to satisfy that f(T) obeys a-Weyl's theorem (property (ω)) for all f ∈ Hol(σ(T)). Also we investigate the small-compact perturbations of operators satisfying a-Weyl's theorem (property (ω)) in the setting of separable Hilbert spaces.


Sign in / Sign up

Export Citation Format

Share Document