scholarly journals SYMMETRIC COLLECTIVE ATTACKS FOR THE EAVESDROPPING OF SYMMETRIC QUANTUM KEY DISTRIBUTION

2008 ◽  
Vol 06 (supp01) ◽  
pp. 765-771 ◽  
Author(s):  
STEFANO PIRANDOLA

We consider the collective eavesdropping of the BB84 and six-state protocols. Since these protocols are symmetric in the eigenstates of conjugate bases, we consider collective attacks having the same kind of symmetry. We then show how these symmetric collective attacks are sufficiently strong in order to minimize the Devetak–Winter rates. In fact, it is quite easy to construct simple examples able to reach the unconditionally secure key rates of these protocols.

2017 ◽  
Vol 17 (3&4) ◽  
pp. 209-241
Author(s):  
Walter O. Krawec

In this paper, we derive key-rate expressions for different quantum key distribution protocols. Our key-rate equations utilize multiple channel statistics, including those gathered from mismatched measurement bases - i.e., when Alice and Bob choose incompatible bases. In particular, we will consider an Extended B92 and a two-way semi-quantum protocol. For both these protocols, we demonstrate that their tolerance to noise is higher than previously thought - in fact, we will show the semi-quantum protocol can actually tolerate the same noise level as the fully quantum BB84 protocol. Along the way, we will also consider an optimal QKD protocol for various quantum channels. Finally, all the key-rate expressions which we derive in this paper are applicable to any arbitrary, not necessarily symmetric, quantum channel.


Author(s):  
M Delina ◽  
B H Iswanto ◽  
H Permana ◽  
S Muhasyah

2015 ◽  
Vol 05 (02) ◽  
pp. 33-40 ◽  
Author(s):  
Makhamisa Senekane ◽  
Mhlambululi Mafu ◽  
Francesco Petruccione

2021 ◽  
Vol 53 (6) ◽  
Author(s):  
Xiaobo Zheng ◽  
Zhiwen Zhao

AbstractQuantum key distribution uses the principle of quantum physics to realize unconditionally secure key distribution protocol. But this kind of security needs to be based on the authenticated classical channel. Although there are quantum key distribution protocols without classical channel, authentication is still needed. In the process of key distribution, authentication is not considered, which is also a problem of quantum key distribution protocol. In this paper, a quantum key distribution protocol with two-way authentication is proposed. Identity authentication is carried out at the same time of key distribution. If the identity authentication fails, the key distribution protocol cannot be carried out. If the key distribution protocol is aborted, the identity authentication is not successful. The conclusion of this paper is based on a central authentication system supported by symmetric encryption theory, which uses pseudo-random functions, multiple sets of quantum conjugate bases and Measurement-device-independent technology to simultaneously achieve two-way authentication and key distribution.


2020 ◽  
Author(s):  
Vimal Gaur ◽  
Devika Mehra ◽  
Anchit Aggarwal ◽  
Raveena Kumari ◽  
Srishti Rawat

2015 ◽  
Vol 92 (5) ◽  
Author(s):  
Jean-Philippe Bourgoin ◽  
Nikolay Gigov ◽  
Brendon L. Higgins ◽  
Zhizhong Yan ◽  
Evan Meyer-Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document