quantum channel
Recently Published Documents


TOTAL DOCUMENTS

654
(FIVE YEARS 128)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Author(s):  
C. Seida ◽  
A. El Allati ◽  
N. Metwally ◽  
Y. Hassouni

Abstract In this suggested version of the bidirectional teleportation protocol, it is assumed that the used quantum channel passes through an amplitude damping channel. Therefore, some of its quantum correlations (entanglement) are lost and, consequently, its efficiency to implement this protocol decreases. The weak and the reversal measurements are used to recover the losses of these correlations, where the negativity, as a measure of entanglement is improved. In this context, we discussed the effect of the noisy strength on the fidelities of the bidirectional teleported states between the users. It is shown that, by applying the weak and the reversal measurements (WRM) on the initial quantum channel between the users, the fidelities of the teleported states are improved. Moreover, we showed that, the upper bounds of the teleported states depend on the initial states of the triggers and the strengths of WRM. It is worth noting that the WRM improves the quantum correlations of the shared channel and, hence, the fidelity of the teleported state if the initial fidelity of the teleported state is larger than 0.5


2022 ◽  
Author(s):  
Jino Heo ◽  
Seong Gon Choi

Abstract We propose photonic schemes for the distribution and reconstruction of a two-qubit entangled state using a hybrid entangled state under a noisy quantum channel. First, to generate a hybrid entangled state correlated with polarizations and time-bins, we employ a quantum dot (QD)-cavity system (nonlinear optical gate) and linear optical devices to implement controlled operation. These schemes can achieve the distribution and reconstruction of a two-qubit entangled state from hybrid entanglement by utilizing only linear optical devices without a QD-cavity system (i.e., a nonlinear optical device) for users who want to share an entangled state under a noisy quantum channel. For a feasible realization of the proposed schemes, we analyze the interaction between the photons and QD-cavity system and demonstrate the experimental conditions under which the reliable performance of the QD-cavity system is achieved.


Author(s):  
Ya Yang ◽  
Jing Lu ◽  
Lan Zhou

Abstract Quantum router is one of the essential elements in the quantum network. Conventional routers only direct a single photon from one quantum channel into another. Here, we proposed a few-photon router. The active element of the router is a single qubit chirally coupled to two independent waveguides simultaneously, where each waveguide mode provides a quantum channel. By introducing the operators of the scatter-free space and the controllable space, the output state of the one-photon and two-photon scattering are derived analytically. It is found that the qubit can direct one and two photons from one port of the incident waveguide to an arbitrarily selected port of the other waveguide with unity, respectively. However, two photons cannot be simultaneously routed to the same port due to the anti-bunch effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Othman O. Khalifa ◽  
Nur Amirah bt Sharif ◽  
Rashid A Saeed ◽  
S. Abdel-Khalek ◽  
Abdulaziz N. Alharbi ◽  
...  

Quantum computing is a computer development technology that uses quantum mechanics to perform the operations of data and information. It is an advanced technology, yet the quantum channel is used to transmit the quantum information which is sensitive to the environment interaction. Quantum error correction is a hybrid between quantum mechanics and the classical theory of error-correcting codes that are concerned with the fundamental problem of communication, and/or information storage, in the presence of noise. The interruption made by the interaction makes transmission error during the quantum channel qubit. Hence, a quantum error correction code is needed to protect the qubit from errors that can be caused by decoherence and other quantum noise. In this paper, the digital system design of the quantum error correction code is discussed. Three designs used qubit codes, and nine-qubit codes were explained. The systems were designed and configured for encoding and decoding nine-qubit error correction codes. For comparison, a modified circuit is also designed by adding Hadamard gates.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012092
Author(s):  
E E Mekhtiev ◽  
I S Gerasin ◽  
N V Rudavin ◽  
A V Duplinsky ◽  
Y V Kurochkin

Abstract The crucial task for polarization-encoding fiber QKD is to compensate polarization drift occurring in a quantum channel. To solve this problem, the receiver usually uses a polarization controller. For proper operation, this device must be efficiently managed in real-time. In this work, a gradient-descent-based algorithm is proposed to solve this problem. The algorithm was implemented and tested on a QRate commercial QKD fiber system, that utilizes BB84-protocol. Low and stable QBER has been obtained during a day of continuous operation.


Author(s):  
Engin Şahin ◽  
İhsan Yilmaz

Quantum computers are very efficient in terms of speed and security. Decoherence and architectural complexity restrict the control of sensitive quantum information as the number of qubits in a quantum computer increases. Therefore, it is more convenient to make a device with multiple quantum processors with small number of qubits instead of making a device with a large number of qubits quantum processors. The implementation of controlled unitary gates is a problem in such nonlocal systems. The methods in the literature for this problem use entangled qubit pairs, classical communication channels and classical bits. The existing methods perform some unitary operations on the target state for reconstruction after sending information through classical communication channels and applying quantum measurements on control states. In this study, a generalized method for nonlocal implementation of multi-qubit controlled unitary quantum gates with quantum channel is proposed. The proposed method can implement any controlled gate on the control and target qubits that are far from each other in terms of location. The method does not require classical channels and classical bits, any extra unitary operation for reconstruction. The proposed method is both more secure and uses less resources for operations than the other hybrid methods in the literature. Comparisons with existing studies are given in terms of required entangled qubit pairs, classical channels and bits, extra unitary operations for reconstruction the target state, and the advantages of the proposed method are revealed.


Author(s):  
Jin Shi

The scheme for controlled unidirectional cyclic remote state preparation of single-qutrit equatorial states is put forward. Alice, Bob, Charlie, and David share a seven-qutrit entangled state as the quantum channel. Under the control of David, Alice can remotely prepare a single-qutrit equatorial state at Bob’s site, Bob can remotely prepare a single-qutrit equatorial state at Charlie’s site, Charlie can remotely prepare a single-qutrit equatorial state at Alice’s site simultaneously. The direction of controlled unidirectional cyclic remote state preparation can be reversed by changing measured qutrits of the quantum channel. The scheme for controlled bidirectional cyclic remote state preparation of single-qutrit equatorial states is also proposed. The schemes can be generalized to controlled unidirectional and bidirectional multi-party cyclic remote state preparation of single-qudit equatorial states.


2021 ◽  
Vol 21 (15&16) ◽  
pp. 1320-1352
Author(s):  
Augustin Vanrietvelde ◽  
Giulio Chiribella

No quantum circuit can turn a completely unknown unitary gate into its coherently controlled version. Yet, coherent control of unknown gates has been realised in experiments, making use of a different type of initial resources. Here, we formalise the task achieved by these experiments, extending it to the control of arbitrary noisy channels, and to more general types of control involving higher dimensional control systems. For the standard notion of coherent control, we identify the information-theoretic resource for controlling an arbitrary quantum channel on a $d$-dimensional system: specifically, the resource is an extended quantum channel acting as the original channel on a $d$-dimensional sector of a $(d+1)$-dimensional system. Using this resource, arbitrary controlled channels can be built with a universal circuit architecture. We then extend the standard notion of control to more general notions, including control of multiple channels with possibly different input and output systems. Finally, we develop a theoretical framework, called supermaps on routed channels, which provides a compact representation of coherent control as an operation performed on the extended channels, and highlights the way the operation acts on different sectors.


Author(s):  
Shivani A. Kumar

The present work proposes a scheme to teleport a tripartite coherent state using an unparalleled four-component state as a quantum channel. The scheme involves linear optical devices like beam splitters and phase shifters. It is shown that, even by taking an uncompromising quantum model, almost a complete teleportation can be achieved with an impressive number of photons. It is also shown that the teleportation fails only if zero photons are found in all the three output modes or zero in two output modes and a nonzero even/odd photon in one mode. However, the probability of getting these output modes is almost negligible.


2021 ◽  
Author(s):  
Zhenlong Zhao ◽  
Boyu Ji ◽  
Xiaowei Song ◽  
Peng Lang ◽  
Yulu Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document