A new construction of mutually unbiased maximally entangled bases in ℂq⊗ℂq

Author(s):  
Dengming Xu ◽  
Feiya Li ◽  
Wei Hu

This paper is devoted to constructing mutually unbiased maximally entangled bases (MUMEBs) in [Formula: see text], where [Formula: see text] is a prime power. We prove that [Formula: see text] when [Formula: see text] is even, and [Formula: see text] when [Formula: see text] is odd, where [Formula: see text] is the maximal size of the sets of MUMEBs in [Formula: see text]. This highly raises the lower bounds of [Formula: see text] given in D. Xu, Quant. Inf. Process. 18(7) (2019) 213; D. Xu, Quant. Inf. Process. 19(6) (2020) 175. It should de noted that the method used in the paper is completely different from that in D. Xu, Quant. Inf. Process. 18(7) (2019) 213; D. Xu, Quant. Inf. Process. 19(6) (2020) 175.

2005 ◽  
Vol 5 (2) ◽  
pp. 93-101
Author(s):  
P. Wocjan ◽  
T. Beth

We show that k=w+2 mutually unbiased bases can be constructed in any square dimension d=s^2 provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (s,k)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bounds on the asymptotic growth of the number of mutually orthogonal Latin squares (based on number theoretic sieving techniques), we obtain that the number of mutually unbiased bases in dimensions d=s^2 is greater than s^{1/14.8} for all s but finitely many exceptions. Furthermore, our construction gives more mutually unbiased bases in many non-prime-power dimensions than the construction that reduces the problem to prime power dimensions.


2018 ◽  
Vol 18 (13&14) ◽  
pp. 1152-1164
Author(s):  
Xiaoya Cheng ◽  
Yun Shang

Mutually unbiased bases which is also maximally entangled bases is called mutually unbiased maximally entangled bases (MUMEBs). We study the construction of MUMEBs in bipartite system. In detail, we construct 2(p^a-1) MUMEBs in \cd by properties of Guss sums for arbitrary odd d. It improves the known lower bound p^a-1 for odd d. Certainly, it also generalizes the lower bound 2(p^a-1) for d being a single prime power. Furthermore, we construct MUMEBs in \ckd for general k\geq 2 and odd d. We get the similar lower bounds as k,b are both single prime powers. Particularly, when k is a square number, by using mutually orthogonal Latin squares, we can construct more MUMEBs in \ckd, and obtain greater lower bounds than reducing the problem into prime power dimension in some cases.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &amp;(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &amp;(b)\; \ell_q(r,R)&lt; 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>


2008 ◽  
Vol 18 (1) ◽  
pp. 165-175 ◽  
Author(s):  
IVAN GERACE ◽  
FEDERICO GRECO

The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour in a symmetric circulant matrix. The computational complexity of this problem is not known – only upper and lower bounds have been determined. This paper provides a characterisation of the two-stripe case. Instances where the minimum cost of a tour is equal to either the upper or lower bound are recognised. A new construction providing a tour is proposed for the remaining instances, and this leads to a new upper bound that is closer than the previous one.


2013 ◽  
Vol 24 (04) ◽  
pp. 1350026 ◽  
Author(s):  
C. CILIBERTO ◽  
M. ZAIDENBERG

Using degeneration to scrolls, we give an easy proof of non-existence of curves of low genera on general surfaces in ℙ3of degree d ≥ 5. We also show that there exist Kobayashi hyperbolic surfaces in ℙ3of degree d = 7 (a result so far unknown), and give a new construction of such surfaces of degree d = 6. Our method yields also some lower bounds for geometric genera of surfaces lying on general hypersurfaces of degree 3d ≥ 15 in ℙ4.


Sign in / Sign up

Export Citation Format

Share Document