scholarly journals A COMPLETE LIFT FOR SEMISPRAYS

2010 ◽  
Vol 07 (02) ◽  
pp. 267-287 ◽  
Author(s):  
IOAN BUCATARU ◽  
MATIAS F. DAHL

In this paper, we define a complete lift for semisprays. If S is a semispray on a manifold M, its complete lift is a new semispray Scon TM. The motivation for this lift is two-fold: First, geodesics for Sccorrespond to the Jacobi fields for S, and second, this complete lift generalizes and unifies previously known complete lifts for Riemannian metrics, affine connections, and regular Lagrangians. When S is a spray, we prove that the projective geometry of Scuniquely determines S. We also study how symmetries and constants of motions for S lift into symmetries and constants of motions for Sc.

1937 ◽  
Vol 5 (2) ◽  
pp. 103-115 ◽  
Author(s):  
J. Haantjes

An affine connection in an n-dimensional manifold Xn defines a system of paths, but conversely a connection is not defined uniquely by a system of paths. It was shown by H. Weyl that any two affine connections whose components are related by an equation of the formwhere is the unit affinor, give the same system of paths. In the geometry of a system of paths, a particular parameter on the paths, called the projective normal parameter, plays an important part. This parameter, which is invariant under a transformation of connection (1), was introduced by J. H. .C. Whitehead. It can be defined by means of a Schwarzian differential equation and it is determined up to linear fractional transformations. In § 1 this method is briefly discussed.


Author(s):  
Alexandre Anahory Simoes ◽  
Juan Carlos Marrero ◽  
David Martin de Diego

Abstract In this paper, we define Jacobi fields for nonholonomic mechanics using a similar characterization than in Riemannian geometry. We give explicit conditions to find Jacobi fields and finally we find the nonholonomic Jacobi fields in two equivalent ways: the first one, using an appropriate complete lift of the nonholonomic system and, in the second one, using the curvature and torsion of the associated nonholonomic connection.


2020 ◽  
pp. 1-24
Author(s):  
VICTORIA SADOVSKAYA

Abstract We consider Hölder continuous cocycles over an accessible partially hyperbolic system with values in the group of diffeomorphisms of a compact manifold $\mathcal {M}$ . We obtain several results for this setting. If a cocycle is bounded in $C^{1+\gamma }$ , we show that it has a continuous invariant family of $\gamma $ -Hölder Riemannian metrics on $\mathcal {M}$ . We establish continuity of a measurable conjugacy between two cocycles assuming bunching or existence of holonomies for both and pre-compactness in $C^0$ for one of them. We give conditions for existence of a continuous conjugacy between two cocycles in terms of their cycle weights. We also study the relation between the conjugacy and holonomies of the cocycles. Our results give arbitrarily small loss of regularity of the conjugacy along the fiber compared to that of the holonomies and of the cocycle.


1993 ◽  
Vol 54 (2) ◽  
pp. 191-206 ◽  
Author(s):  
K.C. Gupta ◽  
Suryansu Ray
Keyword(s):  

Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


Author(s):  
Tilman Sauer ◽  
Tobias Schütz

AbstractWe discuss Einstein’s knowledge of projective geometry. We show that two pages of Einstein’s Scratch Notebook from around 1912 with geometrical sketches can directly be associated with similar sketches in manuscript pages dating from his Princeton years. By this correspondence, we show that the sketches are all related to a common theme, the discussion of involution in a projective geometry setting with particular emphasis on the infinite point. We offer a conjecture as to the probable purpose of these geometric considerations.


1990 ◽  
Vol 45 (2) ◽  
pp. 81-94
Author(s):  
Julian Ławrynowicz ◽  
Katarzyna Kędzia ◽  
Leszek Wojtczak

AbstractA complex analytical method of solving the generalised Dirac-Maxwell system has recently been proposed by two of us for a certain class of complex Riemannian metrics. The Dirac equation without the field potential in such a metric appeared to be equivalent to the Dirac-Maxwell system including the field potentials produced by the currents of a particle in question. The method proposed is connected with applying the Fourier transform with respect to the electric charge treated as a variable, with the consideration of the mass as an eigenvalue, and with solving suitable convolution equations. In the present research an explicit calculation based on linearization of the spinor connections is given. The conditions for the motion are interpreted as a starting point to seek selection rules for curved space-times corresponding to actually existing particles. Then the same method is applied to solids. Namely, by a suitable transformation of the configuration space in terms of elements of the interaction matrix corresponding to the Coulomb, exchange, and dipole integrals, the interaction term in the hamiltonian becomes zero, thus leading to experimentally verificable formulae for the autocorrelation time


Sign in / Sign up

Export Citation Format

Share Document