scholarly journals On the projective geometry of paths

1937 ◽  
Vol 5 (2) ◽  
pp. 103-115 ◽  
Author(s):  
J. Haantjes

An affine connection in an n-dimensional manifold Xn defines a system of paths, but conversely a connection is not defined uniquely by a system of paths. It was shown by H. Weyl that any two affine connections whose components are related by an equation of the formwhere is the unit affinor, give the same system of paths. In the geometry of a system of paths, a particular parameter on the paths, called the projective normal parameter, plays an important part. This parameter, which is invariant under a transformation of connection (1), was introduced by J. H. .C. Whitehead. It can be defined by means of a Schwarzian differential equation and it is determined up to linear fractional transformations. In § 1 this method is briefly discussed.

1968 ◽  
Vol 64 (2) ◽  
pp. 439-446 ◽  
Author(s):  
D. Naylor ◽  
S. C. R. Dennis

Sears and Titchmarsh (1) have formulated an expansion in eigenfunctions which requires a knowledge of the s-zeros of the equationHere ka > 0 is supposed given and β is a real constant such that 0 ≤ β < π. The above equation is encountered when one seeks the eigenfunctions of the differential equationon the interval 0 < α ≤ r < ∞ subject to the condition of vanishing at r = α. Solutions of (2) are the Bessel functions J±is(kr) and every solution w of (2) is such that r−½w(r) belongs to L2 (α, ∞). Since the problem is of the limit circle type at infinity it is necessary to prescribe a suitable asymptotic condition there to make the eigenfunctions determinate. In the present instance this condition is


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


1964 ◽  
Vol 4 (2) ◽  
pp. 179-194 ◽  
Author(s):  
J. C. Butcher

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.


Author(s):  
J. R. Philip

AbstractWe study the equationHere s is not necessarily integral; m is initially unrestricted. Material-conserving instantaneous source solutions of A are reviewed as an entrée to material-losing solutions. Simple physical arguments show that solutions for a finite slug losing material at infinity at a finite nonzero rate can exist only for the following m-ranges: 0 < s < 2, −2s−1 < m ≤ −1; s > 2, −1 < m < −2s−1. The result for s = 1 was known previously. The case s = 2, m = −1, needs further investigation. Three different similarity schemes all lead to the same ordinary differential equation. For 0 < s < 2, parameter γ (0 < γ < ∞) in that equation discriminates between the three classes of solution: class 1 gives the concentration scale decreasing as a negative power of (1 + t/T); 2 gives exponential decrease; and 3 gives decrease as a positive power of (1 − t/T), the solution vanishing at t = T < ∞. Solutions for s = 1, are presented graphically. The variation of concentration and flux profiles with increasing γ is physically explicable in terms of increasing flux at infinity. An indefinitely large number of exact solutions are found for s = 1,γ = 1. These demonstrate the systematic variation of solution properties as m decreases from −1 toward −2 at fixed γ.


1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ &gt; 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ &lt; 0. The optimal stopping time is given by τ* = inf {t &gt; 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 &lt; g(s) &lt; s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t&gt;0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1980 ◽  
Vol 32 (6) ◽  
pp. 1299-1305 ◽  
Author(s):  
Barbu C. Kestenband

We show that any PG(2n, q2) is a disjoint union of (q2n+1 − 1)/ (q − 1) caps, each cap consisting of (q2n+1 + 1)/(q + 1) points. Furthermore, these caps constitute the “large points” of a PG(2n, q), with the incidence relation defined in a natural way.A square matrix H = (hij) over the finite field GF(q2), q a prime power, is said to be Hermitian if hijq = hij for all i, j [1, p. 1161]. In particular, hii ∈ GF(q). If if is Hermitian, so is p(H), where p(x) is any polynomial with coefficients in GF(q).Given a Desarguesian Projective Geometry PG(2n, q2), n > 0, we denote its points by column vectors:All Hermitian matrices in this paper will be 2n + 1 by 2n + 1, n > 0.


1979 ◽  
Vol 22 (3) ◽  
pp. 363-366
Author(s):  
Colin Bennett ◽  
Karl Rudnick ◽  
Jeffrey D. Vaaler

In this note the best uniform approximation on [—1,1] to the function |x| by symmetric complex valued linear fractional transformations is determined. This is a special case of the more general problem studied in [1]. Namely, for any even, real valued function f(x) on [-1,1] satsifying 0 = f ( 0 ) ≤ f (x) ≤ f (1) = 1, determine the degree of symmetric approximationand the extremal transformations U whenever they exist.


Sign in / Sign up

Export Citation Format

Share Document