explicit calculation
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Anastasia S. Ovchinnikova ◽  

The paper presents an approach to coupled modeling of hydrodynamic and thermal processes occurring in the oil reservoir during field development using thermal methods of enhanced oil recovery. To simulate the processes of non-isothermal multiphase flow, an approach based on implicit calculation of pressure using the finite element method and an explicit calculation of phase saturations is used. A computational scheme for calculating the temperature field is considered. This scheme makes it possible to take into account both heat transfer between phases and heat transfer of a fluid mixture and matrix-rock. In order to take into account the effect of thermal conductivity, a coefficient characterizing the rate of heat transfer between the fluid mixture and the rock is used. The proposed scheme also takes into account the effect of the temperature field on the phases flow in the field reservoir and provides for the possibility of heat sources and sinks occured due to chemical reactions or thermodynamic processes in gaseous phases. Numerical experiments were carried out on a model of a real oil field obtained as a result of history matching of well data. The model contains a large number of wells and is characterized by a high heterogeneity of the porous medium. The applicability of the considered computational scheme is demonstrated on the example of modeling hot water injection into wells crossing a formation with super-viscous oil. The efficiency of thermal methods for the development of super-viscous oil fields is shown. When hot water was injected into the reservoir, the increase in oil production was about 25 % due to a significant decrease in oil viscosity. The time spent for calculating the temperature field while simulating a multiphase flow did not exceed 6 % of the total computational time.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Naftali Smith ◽  
Pierre Le Doussal ◽  
Satya Majumdar ◽  
Gregory Schehr

We study NN spinless fermions in their ground state confined by an external potential in one dimension with long range interactions of the general Calogero-Sutherland type. For some choices of the potential this system maps to standard random matrix ensembles for general values of the Dyson index \betaβ. In the fermion model \betaβ controls the strength of the interaction, \beta=2β=2 corresponding to the noninteracting case. We study the quantum fluctuations of the number of fermions N_DND in a domain DD of macroscopic size in the bulk of the Fermi gas. We predict that for general \betaβ the variance of N_DND grows as A_{\beta} \log N + B_{\beta}AβlogN+Bβ for N \gg 1N≫1 and we obtain a formula for A_\betaAβ and B_\betaBβ. This is based on an explicit calculation for \beta\in\left\{ 1,2,4\right\}β∈{1,2,4} and on a conjecture that we formulate for general \betaβ. This conjecture further allows us to obtain a universal formula for the higher cumulants of N_DND. Our results for the variance in the microscopic regime are found to be consistent with the predictions of the Luttinger liquid theory with parameter K = 2/\betaK=2/β, and allow to go beyond. In addition we present families of interacting fermion models in one dimension which, in their ground states, can be mapped onto random matrix models. We obtain the mean fermion density for these models for general interaction parameter \betaβ. In some cases the fermion density exhibits interesting transitions, for example we obtain a noninteracting fermion formulation of the Gross-Witten-Wadia model.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianbo Guan ◽  
Yu Li ◽  
Guohua Liu

The full-waveform inversion (FWI) of a Love wave has become a powerful tool for shallow-surface site characterization. In classic conjugate gradient algorithm- (CG) based FWI, the energy distribution of the gradient calculated with the adjoint state method does not scale with increasing depth, resulting in diminished illumination capability and insufficient model updating. The inverse Hessian matrix (HM) can be used as a preprocessing operator to balance, filter, and regularize the gradient to strengthen the model illumination capabilities at depth and improve the inversion accuracy. However, the explicit calculation of the HM is unacceptable due to its large dimension in FWI. In this paper, we present a new method for obtaining the inverse HM of the Love wave FWI by referring to HM determination in inverse scattering theory to achieve a preconditioned gradient, and the preconditioned CG (PCG) is developed. This method uses the Love wave wavefield stress components to construct a pseudo-HM to avoid the huge calculation cost. It can effectively alleviate the influence of nonuniform coverage from source to receiver, including double scattering, transmission, and geometric diffusion, thus improving the inversion result. The superiority of the proposed algorithm is verified with two synthetic tests. The inversion results indicate that the PCG significantly improves the imaging accuracy of deep media, accelerates the convergence rate, and has strong antinoise ability, which can be attributed to the use of the pseudo-HM.


2021 ◽  
Vol 38 (12) ◽  
pp. 127101
Author(s):  
Yunqing Ouyang ◽  
Qing-Rui Wang ◽  
Zheng-Cheng Gu ◽  
Yang Qi

In recent years, great success has been achieved on the classification of symmetry-protected topological (SPT) phases for interacting fermion systems by using generalized cohomology theory. However, the explicit calculation of generalized cohomology theory is extremely hard due to the difficulty of computing obstruction functions. Based on the physical picture of topological invariants and mathematical techniques in homotopy algebra, we develop an algorithm to resolve this hard problem. It is well known that cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear bases, known as the resolutions. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinity to finity. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 423
Author(s):  
Dibya Chakraborty ◽  
Cesar Damian ◽  
Alberto González Bernal ◽  
Oscar Loaiza-Brito

We present a proposal to relate the de Sitter conjecture (dSC) with the time dependence of fluxes via the covariant entropy bound (CEB). By assuming an early phase of accelerated expansion where the CEB is satisfied, we take into account a contribution from time-dependent flux compactification to the four-dimensional entropy which establishes a bound on the usual slow-roll parameters ηH and ϵH. We also show an explicit calculation of entropy from a toroidal flux compactification, from a transition amplitude of time-dependent fluxes which allows us to determine the conditions on which the bounds on the slow-roll parameters are in agreement to the dSC.


2021 ◽  
Vol 11 (21) ◽  
pp. 10148
Author(s):  
Francesco Causone ◽  
Anita Tatti ◽  
Andrea Alongi

In recent years, many cities around the world have pledged to upgrade their building stocks to carbon-neutral. However, the literature does not yet provide a shared definition of carbon-neutral building (CNB), and the assessment objectives and methodological approaches are vague and fragmented. Starting from the available standards and scientific literature on life cycle assessment (LCA), this paper advances an operational definition for CNB on the basis of an explicit calculation approach. It then applies the definition to an urban case study, comparing it against a state-of-the-art nearly Zero Energy Building (nZEB) scenario, with the intent of highlighting the major practical limitations connected to the application of a methodologically sound carbon neutrality calculation. The case study shows that carbon neutral objectives can hardly be achieved by single urban buildings because of the lack of spaces that can provide onsite carbon offsetting actions. Carbon neutrality may be better approached at the city, regional, or national scales, where overarching policies may be defined.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 403
Author(s):  
Aden Jowsey ◽  
Matt Visser

Dimensional analysis shows that the speed of light and Newton’s constant of gravitation can be combined to define a quantity F*=c4/GN with the dimensions of force (equivalently, tension). Then in any physical situation we must have Fphysical=fF*, where the quantity f is some dimensionless function of dimensionless parameters. In many physical situations explicit calculation yields f=O(1), and quite often f≤1/4. This has led multiple authors to suggest a (weak or strong) maximum force/maximum tension conjecture. Working within the framework of standard general relativity, we will instead focus on idealized counter-examples to this conjecture, paying particular attention to the extent to which the counter-examples are physically reasonable. The various idealized counter-examples we shall explore strongly suggest that one should not put too much credence into any truly universal maximum force/maximum tension conjecture. Specifically, idealized fluid spheres on the verge of gravitational collapse will generically violate the weak (and strong) maximum force conjectures. If one wishes to retain any truly general notion of “maximum force” then one will have to very carefully specify precisely which forces are to be allowed within the domain of discourse.


2021 ◽  
pp. 329-334
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We briefly review the birth of renormalisation theory at the 1947 Shelter Island conference. We study the particular case of quantum electrodynamics in the example of an electron scattered by an external electromagnetic field. We give the general form of the amplitude in terms of form factors. At one loop the amplitude has both ultraviolet and infrared divergences. We show how to absorb the ultraviolet divergences by means of counterterms whose values are determined by the renormalisation conditions. We also show that at one loop order the electron anomalous magnetic moment is free of divergences, ultraviolet as well as infrared, and present its explicit calculation.


2021 ◽  
Author(s):  
Florian Ott ◽  
Stefan Kiebel ◽  
Eric Legler

Forward planning is often essential to achieve goals over extended time periods. However, forward planning is typically computationally costly for the brain and should only be employed when necessary. The explicit calculation of how necessary forward planning will be, is in itself computationally costly. We therefore assumed that the brain generates a mapping from a particular situation to a proxy of planning value to make fast decisions about whether to use forward planning, or not. Moreover, since the state space of real world decision problems can be large, we hypothesized that such a mapping will rely on mechanisms that generalize sets of situations based on shared demand for planning. We tested this hypothesis in an fMRI study using a novel complex sequential task. Our results indicate that participants abstracted from the set of task features to more generalized control contexts that govern the balancing between forward planning and a simple response strategy. Strikingly, we found that correlations of conflict with response time and with activity in the dorsal anterior cingulate cortex were dependent on context. This context-dependency might reflect that the cognitive control system draws on category-based cognition, harnessing regularities in control demand across task space to generate control contexts that help reduce the complexity of control allocation decisions.


Sign in / Sign up

Export Citation Format

Share Document