The well-posedness theory for Euler–Poisson fluids with non-zero heat conduction

2014 ◽  
Vol 11 (04) ◽  
pp. 679-703
Author(s):  
Jiang Xu

This paper is devoted to the Euler–Poisson equations for fluids with non-zero heat conduction, arising in semiconductor science. Due to the thermal effect of the temperature equation, the local well-posedness theory by Xu and Kawashima (2014) for generally symmetric hyperbolic systems in spatially critical Besov spaces does not directly apply. To deal with this difficulty, we develop a generalized version of the Moser-type inequality by using Bony's decomposition. With a standard iteration argument, we then establish the local well-posedness of classical solutions to the Cauchy problem for intial data in spatially Besov spaces.

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2110
Author(s):  
Yan Liu ◽  
Baiping Ouyang

This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces (θ,u)∈LT∞(B˙p,1N/p)×LT∞(B˙p,1N/p−1)⋂LT1(B˙p,1N/p+1) with 1<p<2N. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for 1<p≤N. Our results can been seen as a version of symmetry in Besov space for the Boussinesq equations.


2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


2000 ◽  
Vol 09 (01) ◽  
pp. 13-34 ◽  
Author(s):  
GEN YONEDA ◽  
HISA-AKI SHINKAI

Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Elena Cordero ◽  
Kasso A. Okoudjou

We give a sharp estimate on the norm of the scaling operatorUλf(x)=f(λx)acting on the weighted modulation spacesMs,tp,q(ℝd). In particular, we recover and extend recent results by Sugimoto and Tomita in the unweighted case. As an application of our results, we estimate the growth in time of solutions of the wave and vibrating plate equations, which is of interest when considering the well-posedness of the Cauchy problem for these equations. Finally, we provide new embedding results between modulation and Besov spaces.


Sign in / Sign up

Export Citation Format

Share Document