capillary waves
Recently Published Documents


TOTAL DOCUMENTS

746
(FIVE YEARS 96)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Vol 92 (2) ◽  
pp. 194
Author(s):  
В.А. Александров

The generation of a directed flow on the water surface in channels with sources and resonators of capillary oscillations is detected and investigated. The surface flow is caused by the movement of the liquid through the gaps between the resonators, as well as between the resonator and the channel walls, under a curved surface that is locally deformed by the sources of capillary vibrations, the transfer of energy of the locally curved surface of the liquid by capillary waves, and the transmission of wave momentum to the particles of the liquid surface in one direction. It is shown that capillary waves together with the energy transfer an excess surface, the flux density of which is equal to the flux of the surface deformation. Moving devices with a capillary-wave accelerator of the surface liquid flow are demonstrated.


2021 ◽  
pp. 60-69
Author(s):  
NATALIA REZANOVA ◽  
YURII BUDASH ◽  
VIKTORIIA PLAVAN ◽  
ALLA KORSHUN ◽  
SERHII PRYSTYNSKYI

Goal. Investigation of the effect of the concentration of nanoparticles of aluminum oxide (Al2O3) and alumina modified with silver (Ag/Al2O3) on the decomposition kinetics of liquid microjets of polypropylene (PP) in a copolyamide (CPA) matrix and the possibility of controlling the microfibrillar morphology of the PP/CPA blend.Methodology. The components of the blend were mixed on a screw-disk extruder. The kinetics of the disintegration of liquid microjets was studied using a technique based on the theory of destabilization of a liquid cylinder under the action of capillary waves. The degree of dispersion of polypropylene in the matrix was evaluated by photomicrographs of cross sections of the extrudates of the blends.Results. Nanoadditives of the original and silver-modified aluminum oxide with a content of (0.1 ÷ 3.0) wt.% In the blend increase the compatibility of the components: the surface tension (γαβ) in the compositions of all compositions decreases. Ag/Al2O3 nanoparticles are more effective than aluminum oxide nanoparticles - the γαβ value decreases by 9.6 and 5.3 times, respectively, which ensures a high degree of dispersion of the dispersed phase component in the matrix. The disintegration resistance of polypropylene microjets is increasing, as evidenced by a decrease in the instability coefficient (q) and an increase in the microjet lifetime (tl). The curves of q and tl dependence on the additive content have an extreme character. The minimum values of the instability coefficient of microjets and the maximum values of their lifetime are achieved at a nanoparticle concentration corresponding to the lowest interfacial tension.Scientific novelty. The positive effect of the investigated nanoadditives on the kinetics of the decomposition of liquid microjets of polypropylene in the copolyamide matrix has been established. The highest modifying effect in the presence of Ag/Al2O3 nanoparticles is due to their amphiphilic nature, which ensures the predominant localization of nanoparticles at the interface and a synergistic increase in the degree of compatibility in the PP/CPA system.Practical significance. The regularities of increasing the stability of liquid microjets to disintegration in polymer blends filled with nanoparticles have been established, which will make it possible to determine the parameters of the processes of mixing and forming fibers and films, in which the microfibrillar structure arising during the flow of the melt will remain unchanged in the products.


2021 ◽  
Vol 9 (12) ◽  
pp. 1422
Author(s):  
Elena Tobisch ◽  
Alexey Kartashov

The problem of spectral description of the nonlinear capillary waves on the fluid surface is discussed. Usually, three-wave nonlinear interactions are considered as a major factor determined by the energy spectrum of these waves in the kinetic wave turbulent regime. We demonstrate that four-wave interactions should be taken into account. In this case, there are two possible scenarios for the transfer of energy over the wave spectrum: kinetic and dynamic. The first is described by the averaged stochastic interaction of waves using the kinetic equation, while the second is described by dynamic equations written for discrete modes. In this article, we compare the time scales, spectral shapes, and other properties of both energy cascades, allowing them to be identified in an experiment.


2021 ◽  
Vol 9 (11) ◽  
pp. 1217
Author(s):  
Sunao Murashige ◽  
Wooyoung Choi

This paper describes a numerical investigation of ripples generated on the front face of deep-water gravity waves progressing on a vertically sheared current with the linearly changing horizontal velocity distribution, namely parasitic capillary waves with a linear shear current. A method of fully nonlinear computation using conformal mapping of the flow domain onto the lower half of a complex plane enables us to obtain highly accurate solutions for this phenomenon with the wide range of parameters. Numerical examples demonstrated that, in the presence of a linear shear current, the curvature of surface of underlying gravity waves depends on the shear strength, the wave energy can be transferred from gravity waves to capillary waves and parasitic capillary waves can be generated even if the wave amplitude is very small. In addition, it is shown that an approximate model valid for small-amplitude gravity waves in a linear shear current can reasonably well reproduce the generation of parasitic capillary waves.


2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Michiel A. Hack ◽  
Patrick Vondeling ◽  
Menno Cornelissen ◽  
Detlef Lohse ◽  
Jacco H. Snoeijer ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2730
Author(s):  
Vladimir Serdyukov ◽  
Nikolay Miskiv ◽  
Anton Surtaev

This paper demonstrates the advantages and prospects of transparent design of the heating surface for the simultaneous study of the hydrodynamic and thermal characteristics of spray cooling. It was shown that the high-speed recording from the reverse side of such heater allows to identify individual droplets before their impact on the forming liquid film, which makes it possible to measure their sizes with high spatial resolution. In addition, such format enables one to estimate the number of droplets falling onto the impact surface and to study the features of the interface evolution during the droplets’ impacts. In particular, the experiments showed various possible scenarios for this interaction, such as the formation of small-scale capillary waves during impacts of small droplets, as well as the appearance of “craters” and splashing crowns in the case of large ones. Moreover, the unsteady temperature field during spray cooling in regimes without boiling was investigated using high-speed infrared thermography. Based on the obtained data, the intensity of heat transfer during spray cooling for various liquid flow rates and heat fluxes was analyzed. It was shown that, for the studied regimes, the heat transfer coefficient weakly depends on the heat flux density and is primarily determined by the flow rate. In addition, the comparison of the processes of spray cooling and nucleate boiling was made, and an analogy was shown in the mechanisms that determine their intensity of heat transfer.


2021 ◽  
Vol 33 (10) ◽  
pp. 101303
Author(s):  
Radomir I. Slavchov ◽  
Boyan Peychev ◽  
A. Said Ismail

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Eric Falcon ◽  
Nicolas Mordant

The last decade has seen a significant increase in the number of studies devoted to wave turbulence. Many deal with water waves, as modeling of ocean waves has historically motivated the development of weak turbulence theory, which addresses the dynamics of a random ensemble of weakly nonlinear waves in interaction. Recent advances in experiments have shown that this theoretical picture is too idealized to capture experimental observations. While gravity dominates much of the oceanic spectrum, waves observed in the laboratory are in fact gravity–capillary waves, due to the restricted size of wave basins. This richer physics induces many interleaved physical effects far beyond the theoretical framework, notably in the vicinity of the gravity–capillary crossover. These include dissipation, finite–system size effects, and finite nonlinearity effects. Simultaneous space-and-time-resolved techniques, now available, open the way for a much more advanced analysis of these effects. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Martí Pi ◽  
José María Escartín ◽  
Francesco Ancilotto ◽  
Manuel Barranco
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document