On Graded Betti Numbers of a Class of Graphs

2018 ◽  
Vol 25 (02) ◽  
pp. 335-348 ◽  
Author(s):  
Saba Yasmeen ◽  
Tongsuo Wu

In this paper, Betti numbers are evaluated for several classes of graphs whose complements are bipartite graphs. Relations are established for the general case, and counting formulae are given in several particular cases, including the union of several mutually disjoint complete graphs.

2015 ◽  
Vol 58 (2) ◽  
pp. 320-333
Author(s):  
Aurora Llamas ◽  
Josá Martínez–Bernal

AbstractThe cover product of disjoint graphs G and H with fixed vertex covers C(G) and C(H), is the graphwith vertex set V(G) ∪ V(H) and edge setWe describe the graded Betti numbers of GeH in terms of those of. As applications we obtain: (i) For any positive integer k there exists a connected bipartite graph G such that reg R/I(G) = μS(G) + k, where, I(G) denotes the edge ideal of G, reg R/I(G) is the Castelnuovo–Mumford regularity of R/I(G) and μS(G) is the induced or strong matching number of G; (ii)The graded Betti numbers of the complement of a tree depends only upon its number of vertices; (iii)The h-vector of R/I(G e H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a diòerent direction, we give a recursive formula for the graded Betti numbers of chordal bipartite graphs.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950231
Author(s):  
Rimpa Nandi ◽  
Ramakrishna Nanduri

In this paper, we compute the graded Betti numbers of toric algebras of certain bipartite graphs [Formula: see text]. Also, the Castelnuovo–Mumford regularity, Hilbert series and multiplicity of [Formula: see text] are explicitly determined.


1982 ◽  
Vol 25 (2) ◽  
pp. 187-206
Author(s):  
Yousef Alavi ◽  
Sabra S. Anderson ◽  
Gary Chartrand ◽  
S.F. Kapoor

A graph G, every vertex of which has degree at least three, is randomly 3-axial if for each vertex v of G, any ordered collection of three paths in G of length one with initial vertex v can be cyclically randomly extended to produce three internally disjoint paths which contain all the vertices of G. Randomly 3-axial graphs of order p > 4 are characterized for p ≢ 1 (mod 3), and are shown to be either complete graphs or certain regular complete bipartite graphs.


2021 ◽  
Vol 10 (4) ◽  
pp. 2115-2129
Author(s):  
P. Kandan ◽  
S. Subramanian

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.


2006 ◽  
Vol 13 (04) ◽  
pp. 711-720 ◽  
Author(s):  
Masako Kokubo ◽  
Takayuki Hibi

The concept of the weakly polymatroidal ideal, which generalizes both the polymatroidal ideal and the prestable ideal, is introduced. A fundamental fact is that every weakly polymatroidal ideal has a linear resolution. One of the typical examples of weakly polymatroidal ideals arises from finite partially ordered sets. We associate each weakly polymatroidal ideal with a finite sequence, alled the polymatroidal sequence, which will be useful for the computation of graded Betti numbers of weakly polymatroidal ideals as well as for the construction of weakly polymatroidal ideals.


2006 ◽  
Vol 128 (3) ◽  
pp. 573-605 ◽  
Author(s):  
David Eisenbud ◽  
C. (Craig) Huneke ◽  
Bernd Ulrich

10.37236/2319 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Jakub Przybyło ◽  
Mariusz Woźniak

Let $c:E(G)\rightarrow [k]$ be  a colouring, not necessarily proper, of edges of a graph $G$. For a vertex $v\in V$, let $\overline{c}(v)=(a_1,\ldots,a_k)$, where $ a_i =|\{u:uv\in E(G),\;c(uv)=i\}|$, for $i\in [k].$ If we re-order the sequence $\overline{c}(v)$ non-decreasingly, we obtain a sequence $c^*(v)=(d_1,\ldots,d_k)$, called a palette of a vertex $v$. This can be viewed as the most comprehensive information about colours incident with $v$ which can be delivered by a person who is unable to name colours but distinguishes one from another. The smallest $k$ such that $c^*$ is a proper colouring of vertices of $G$ is called the colour-blind index of a graph $G$, and is denoted by dal$(G)$. We conjecture that there is a constant $K$ such that dal$(G)\leq K$ for every graph $G$ for which the parameter is well defined. As our main result we prove that $K\leq 6$ for regular graphs of sufficiently large degree, and for irregular graphs with $\delta (G)$ and $\Delta(G)$ satisfying certain conditions. The proofs are based on the Lopsided Lovász Local Lemma. We also show that $K=3$ for all regular bipartite graphs, and for complete graphs of order $n\geq 8$.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


2010 ◽  
Vol 27 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Tao Jiang ◽  
Michael Salerno

Sign in / Sign up

Export Citation Format

Share Document