ON THE POISSON'S RATIO EFFECT ON MIXED-MODE STRESS INTENSITY FACTORS AND T-STRESS IN FUNCTIONALLY GRADED MATERIALS

2004 ◽  
Vol 05 (04) ◽  
pp. 833-861 ◽  
Author(s):  
GLAUCIO H. PAULINO ◽  
JEONG-HO KIM
2005 ◽  
Vol 492-493 ◽  
pp. 403-408 ◽  
Author(s):  
Jeong Ho Kim ◽  
Glaucio H. Paulino

This paper revisits the interaction integral method to evaluate both the mixed-mode stress intensity factors and the T-stress in functionally graded materials under mechanical loading. A nonequilibrium formulation is developed in an equivalent domain integral form, which is naturally suitable to the finite element method. Graded material properties are integrated into the element stiffness matrix using the generalized isoparametric formulation. The type of material gradation considered includes continuum functions, such as an exponential function, but the present formulation can be readily extended to micromechanical models. This paper presents a fracture problem with an inclined center crack in a plate and assesses the accuracy of the present method compared with available semi-analytical solutions.


2019 ◽  
Vol 9 (17) ◽  
pp. 3581 ◽  
Author(s):  
Jin-Rae Cho

This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened and improved by the stress recovery. The modified interaction integral M ˜ ( 1 , 2 ) was employed to evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed method was validated through the representative numerical examples and the effectiveness was justified by comparing the numerical results with the reference solutions.


Sign in / Sign up

Export Citation Format

Share Document