Distinguishing eigenforms of level one

2017 ◽  
Vol 14 (01) ◽  
pp. 31-36
Author(s):  
Trevor Vilardi ◽  
Hui Xue

Assuming the irreducibility of characteristic polynomials of Hecke operators [Formula: see text], we show that two normalized Hecke eigenforms of level one are distinguished by their second Fourier coefficients.

2010 ◽  
Vol 06 (05) ◽  
pp. 1117-1137 ◽  
Author(s):  
T. SHEMANSKE ◽  
S. TRENEER ◽  
L. WALLING

It is well known that newforms of integral weight are simultaneous eigenforms for all the Hecke operators, and that the converse is not true. In this paper, we give a characterization of all simultaneous Hecke eigenforms associated to a given newform, and provide several applications. These include determining the number of linearly independent simultaneous eigenforms in a fixed space which correspond to a given newform, and characterizing several situations in which the full space of cusp forms is spanned by a basis consisting of such eigenforms. Part of our results can be seen as a generalization of results of Choie–Kohnen who considered diagonalization of "bad" Hecke operators on spaces with square-free level and trivial character. Of independent interest, but used herein, is a lower bound for the dimension of the space of newforms with arbitrary character.


2019 ◽  
Vol 15 (05) ◽  
pp. 907-924
Author(s):  
Yingkun Li ◽  
Michael Neururer

In this paper, we prove a conjecture of Broadhurst and Zudilin concerning a divisibility property of the Fourier coefficients of a meromorphic modular form using the generalization of the Shimura lift by Borcherds and Hecke operators on vector-valued modular forms developed by Bruinier and Stein. Furthermore, we construct a family of meromorphic modular forms with this property.


2019 ◽  
Vol 72 (4) ◽  
pp. 928-966
Author(s):  
Yujiao Jiang ◽  
Guangshi Lü

AbstractWe study the analogue of the Bombieri–Vinogradov theorem for $\operatorname{SL}_{m}(\mathbb{Z})$ Hecke–Maass form $F(z)$. In particular, for $\operatorname{SL}_{2}(\mathbb{Z})$ holomorphic or Maass Hecke eigenforms, symmetric-square lifts of holomorphic Hecke eigenforms on $\operatorname{SL}_{2}(\mathbb{Z})$, and $\operatorname{SL}_{3}(\mathbb{Z})$ Maass Hecke eigenforms under the Ramanujan conjecture, the levels of distribution are all equal to $1/2,$ which is as strong as the Bombieri–Vinogradov theorem. As an application, we study an automorphic version of Titchmarch’s divisor problem; namely for $a\neq 0,$$$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D70C}(n)d(n-a)\ll x\log \log x,\end{eqnarray}$$ where $\unicode[STIX]{x1D70C}(n)$ are Fourier coefficients $\unicode[STIX]{x1D706}_{f}(n)$ of a holomorphic Hecke eigenform $f$ for $\operatorname{SL}_{2}(\mathbb{Z})$ or Fourier coefficients $A_{F}(n,1)$ of its symmetric-square lift $F$. Further, as a consequence, we get an asymptotic formula $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D706}_{f}^{2}(n)d(n-a)=E_{1}(a)x\log x+O(x\log \log x),\end{eqnarray}$$ where $E_{1}(a)$ is a constant depending on $a$. Moreover, we also consider the asymptotic orthogonality of the Möbius function against the arithmetic function $\unicode[STIX]{x1D70C}(n)d(n-a)$.


2016 ◽  
Vol 12 (08) ◽  
pp. 2107-2123 ◽  
Author(s):  
Yichao Zhang

In this paper, we prove some divisibility results for the Fourier coefficients of reduced modular forms with sign vectors. More precisely, we generalize a divisibility result of Siegel on constant terms when the weight [Formula: see text], which is related to the weight of Borcherds lifts when [Formula: see text]. In particular, we see that such divisibility of the weight of Borcherds lifts only exists for [Formula: see text]. By considering Hecke operators for the spaces of weakly holomorphic modular forms with sign vectors, we obtain divisibility results in an “orthogonal” direction on reduced modular forms.


2012 ◽  
Vol 149 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Yifan Yang

AbstractLet X be a Shimura curve of genus zero. In this paper, we first characterize the spaces of automorphic forms on X in terms of Schwarzian differential equations. We then devise a method to compute Hecke operators on these spaces. An interesting by-product of our analysis is the evaluation and other similar identities.


2007 ◽  
Vol 03 (03) ◽  
pp. 391-420 ◽  
Author(s):  
SUZANNE CAULK ◽  
LYNNE H. WALLING

We define Hilbert–Siegel modular forms and Hecke "operators" acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel degree) we identify several families of natural identifications between certain spaces of modular forms. We associate the Fourier coefficients of a form in our product space to even integral lattices, independent of basis and choice of coefficient rings. We then determine the action of the Hecke operators on these Fourier coefficients, paralleling the result of Hafner and Walling for Siegel modular forms (where the number field is the field of rationals).


Sign in / Sign up

Export Citation Format

Share Document