hecke eigenform
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Kengo Fukunaga ◽  
Kohta Gejima

Let [Formula: see text] be a normalized cuspidal Hecke eigenform. We give explicit formulas for weighted averages of the rightmost critical values of triple product [Formula: see text]-functions [Formula: see text], where [Formula: see text] and [Formula: see text] run over an orthogonal basis of [Formula: see text] consisting of normalized cuspidal Hecke eigenforms. Those explicit formulas provide us an arithmetic expression of the rightmost critical value of the individual triple product [Formula: see text]-functions.


Author(s):  
James Newton ◽  
Jack A. Thorne

AbstractLet $f$ f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting $\operatorname{Sym}^{n} f$ Sym n f for every $n \geq 1$ n ≥ 1 .


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2036
Author(s):  
Rui Zhang ◽  
Xue Han ◽  
Deyu Zhang

Let f(z) be a holomorphic Hecke eigenform of weight k with respect to SL(2,Z) and let L(s,sym2f)=∑n=1∞cnn−s,ℜs>1 denote the symmetric square L-function of f. In this paper, we consider the Riesz mean of the form Dρ(x;sym2f)=L(0,sym2f)Γ(ρ+1)xρ+Δρ(x;sym2f) and derive the asymptotic formulas for ∫T−HT+HΔρk(x;sym2f)dx, when k≥3.


Author(s):  
Laia Amorós

Let [Formula: see text] denote the mod [Formula: see text] local Hecke algebra attached to a normalized Hecke eigenform [Formula: see text], which is a commutative algebra over some finite field [Formula: see text] of characteristic [Formula: see text] and with residue field [Formula: see text]. By a result of Carayol we know that, if the residual Galois representation [Formula: see text] is absolutely irreducible, then one can attach to this algebra a Galois representation [Formula: see text] that is a lift of [Formula: see text]. We will show how one can determine the image of [Formula: see text] under the assumptions that (i) the image of the residual representation contains [Formula: see text], (ii) [Formula: see text] and (iii) the coefficient ring is generated by the traces. As an application we will see that the methods that we use allow to deduce the existence of certain [Formula: see text]-elementary abelian extensions of big non-solvable number fields.


2020 ◽  
Vol 16 (06) ◽  
pp. 1185-1197
Author(s):  
Chi-Yun Hsu

Let [Formula: see text] be a modular form with complex multiplication. If [Formula: see text] has critical slope, then Coleman’s classicality theorem implies that there is a [Formula: see text]-adic overconvergent generalized Hecke eigenform with the same Hecke eigenvalues as [Formula: see text]. We give a formula for the Fourier coefficients of this generalized Hecke eigenform. We also investigate the dimension of the generalized Hecke eigenspace of [Formula: see text]-adic overconvergent forms containing [Formula: see text].


2019 ◽  
Vol 15 (06) ◽  
pp. 1251-1259
Author(s):  
David Penniston

A partition of a positive integer [Formula: see text] is called [Formula: see text]-regular if none of its parts is divisible by [Formula: see text]. Let [Formula: see text] denote the number of 11-regular partitions of [Formula: see text]. In this paper we give a complete description of the behavior of [Formula: see text] modulo [Formula: see text] when [Formula: see text] in terms of the arithmetic of the ring [Formula: see text]. This description is obtained by relating the generating function for these values of [Formula: see text] to a Hecke eigenform, and as a byproduct we find exact criteria for which of these values are divisible by 5 in terms of the prime factorization of [Formula: see text].


2019 ◽  
Vol 72 (4) ◽  
pp. 928-966
Author(s):  
Yujiao Jiang ◽  
Guangshi Lü

AbstractWe study the analogue of the Bombieri–Vinogradov theorem for $\operatorname{SL}_{m}(\mathbb{Z})$ Hecke–Maass form $F(z)$. In particular, for $\operatorname{SL}_{2}(\mathbb{Z})$ holomorphic or Maass Hecke eigenforms, symmetric-square lifts of holomorphic Hecke eigenforms on $\operatorname{SL}_{2}(\mathbb{Z})$, and $\operatorname{SL}_{3}(\mathbb{Z})$ Maass Hecke eigenforms under the Ramanujan conjecture, the levels of distribution are all equal to $1/2,$ which is as strong as the Bombieri–Vinogradov theorem. As an application, we study an automorphic version of Titchmarch’s divisor problem; namely for $a\neq 0,$$$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D70C}(n)d(n-a)\ll x\log \log x,\end{eqnarray}$$ where $\unicode[STIX]{x1D70C}(n)$ are Fourier coefficients $\unicode[STIX]{x1D706}_{f}(n)$ of a holomorphic Hecke eigenform $f$ for $\operatorname{SL}_{2}(\mathbb{Z})$ or Fourier coefficients $A_{F}(n,1)$ of its symmetric-square lift $F$. Further, as a consequence, we get an asymptotic formula $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D6EC}(n)\unicode[STIX]{x1D706}_{f}^{2}(n)d(n-a)=E_{1}(a)x\log x+O(x\log \log x),\end{eqnarray}$$ where $E_{1}(a)$ is a constant depending on $a$. Moreover, we also consider the asymptotic orthogonality of the Möbius function against the arithmetic function $\unicode[STIX]{x1D70C}(n)d(n-a)$.


2018 ◽  
Vol 30 (5) ◽  
pp. 1079-1087
Author(s):  
Victor Cuauhtemoc García ◽  
Florin Nicolae

AbstractLet {f(z)=\sum_{n=1}^{\infty}a(n)e^{2\pi inz}} be a normalized Hecke eigenform in {S_{2k}^{\mathrm{new}}(\Gamma_{0}(N))} with integer Fourier coefficients. We prove that there exists a constant {C(f\/)>0} such that any integer is a sum of at most {C(f\/)} coefficients {a(n)}. We have {C(f\/)\ll_{\varepsilon,k}N^{\frac{6k-3}{16}+\varepsilon}}.


Sign in / Sign up

Export Citation Format

Share Document